Be sure to visit the book’s website at:

www.DSPguide.com
The Scientist and Engineer's Guide to
Digital Signal Processing

Second Edition

by
Steven W. Smith

California Technical Publishing
San Diego, California
Important Legal Information: Warning and Disclaimer

This book presents the fundamentals of Digital Signal Processing using examples from common science and engineering problems. While the author believes that the concepts and data contained in this book are accurate and correct, they should not be used in any application without proper verification by the person making the application. Extensive and detailed testing is essential where incorrect functioning could result in personal injury or damage to property. The material in this book is intended solely as a teaching aid, and is not represented to be an appropriate or safe solution to any particular problem. For this reason, the author, publisher, and distributors make no warranties, express or implied, that the concepts, examples, data, algorithms, techniques, or programs contained in this book are free from error, conform to any industry standard, or are suitable for any application. The author, publisher, and distributors disclaim all liability and responsibility to any person or entity with respect to any loss or damage caused, or alleged to be caused, directly or indirectly, by the information contained in this book. If you do not wish to be bound by the above, you may return this book to the publisher for a full refund.
Contents at a Glance

FOUNDATIONS
Chapter 1. The Breadth and Depth of DSP 1
Chapter 3. ADC and DAC 35
Chapter 4. DSP Software 67

FUNDAMENTALS
Chapter 5. Linear Systems 87
Chapter 6. Convolution 107
Chapter 7. Properties of Convolution 123
Chapter 8. The Discrete Fourier Transform 141
Chapter 9. Applications of the DFT 169
Chapter 10. Fourier Transform Properties 185
Chapter 11. Fourier Transform Pairs 209
Chapter 12. The Fast Fourier Transform 225
Chapter 13. Continuous Signal Processing 243

DIGITAL FILTERS
Chapter 14. Introduction to Digital Filters 261
Chapter 15. Moving Average Filters 277
Chapter 16. Windowed-Sinc Filters 285
Chapter 17. Custom Filters 297
Chapter 18. FFT Convolution 311
Chapter 19. Recursive Filters 319
Chapter 20. Chebyshev Filters 333
Chapter 21. Filter Comparison 343

APPLICATIONS
Chapter 22. Audio Processing 351
Chapter 23. Image Formation and Display 373
Chapter 24. Linear Image Processing 397
Chapter 25. Special Imaging Techniques 423
Chapter 26. Neural Networks (and more!) 451
Chapter 27. Data Compression 481
Chapter 28. Digital Signal Processors 503
Chapter 29. Getting Started with DSPs 535

COMPLEX TECHNIQUES
Chapter 30. Complex Numbers 551
Chapter 31. The Complex Fourier Transform 567
Chapter 32. The Laplace Transform 581
Chapter 33. The z-Transform 605

Glossary ... 631
Index ... 643
Table of Contents

FOUNDATIONS

Chapter 1. The Breadth and Depth of DSP 1
 The Roots of DSP 1
 Telecommunications 4
 Audio Processing 5
 Echo Location 7
 Imaging Processing 9

Chapter 2. Statistics, Probability and Noise 11
 Signal and Graph Terminology 11
 Mean and Standard Deviation 13
 Signal vs. Underlying Process 17
 The Histogram, Pmf and Pdf 19
 The Normal Distribution 26
 Digital Noise Generation 29
 Precision and Accuracy 32

Chapter 3. ADC and DAC 35
 Quantization 35
 The Sampling Theorem 39
 Digital-to-Analog Conversion 44
 Analog Filters for Data Conversion 48
 Selecting the Antialias Filter 55
 Multirate Data Conversion 58
 Single Bit Data Conversion 60

Chapter 4. DSP Software 67
 Computer Numbers 67
 Fixed Point (Integers) 68
 Floating Point (Real Numbers) 70
 Number Precision 72
 Execution Speed: Program Language 76
 Execution Speed: Hardware 80
 Execution Speed: Programming Tips 84
FUNDAMENTALS

Chapter 5. Linear Systems 87
 Signals and Systems 87
 Requirements for Linearity 89
 Static Linearity and Sinusoidal Fidelity 92
 Examples of Linear and Nonlinear Systems 94
 Special Properties of Linearity 96
 Superposition: the Foundation of DSP 98
 Common Decompositions 100
 Alternatives to Linearity 104

Chapter 6. Convolution 107
 The Delta Function and Impulse Response 107
 Convolution 108
 The Input Side Algorithm 112
 The Output Side Algorithm 116
 The Sum of Weighted Inputs 122

Chapter 7. Properties of Convolution 123
 Common Impulse Responses 123
 Mathematical Properties 132
 Correlation 136
 Speed 140

Chapter 8. The Discrete Fourier Transform 141
 The Family of Fourier Transforms 141
 Notation and Format of the real DFT 146
 The Frequency Domain's Independent Variable 148
 DFT Basis Functions 150
 Synthesis, Calculating the Inverse DFT 152
 Analysis, Calculating the DFT 156
 Duality 161
 Polar Notation 161
 Polar Nuisances 164

Chapter 9. Applications of the DFT 169
 Spectral Analysis of Signals 169
 Frequency Response of Systems 177
 Convolution via the Frequency Domain 180

Chapter 10. Fourier Transform Properties 185
 Linearity of the Fourier Transform 185
 Characteristics of the Phase 188
 Periodic Nature of the DFT 194
 Compression and Expansion, Multirate methods 200
Multiplying Signals (Amplitude Modulation) 204
The Discrete Time Fourier Transform 206
Parseval's Relation 208

Chapter 11. Fourier Transform Pairs 209
 Delta Function Pairs 209
 The Sinc Function 212
 Other Transform Pairs 215
Gibbs Effect 218
Harmonics 220
Chirp Signals 222

Chapter 12. The Fast Fourier Transform 225
 Real DFT Using the Complex DFT 225
 How the FFT Works 228
 FFT Programs 233
 Speed and Precision Comparisons 237
 Further Speed Increases 238

Chapter 13. Continuous Signal Processing 243
 The Delta Function 243
 Convolution 246
 The Fourier Transform 252
 The Fourier Series 255

DIGITAL FILTERS

Chapter 14. Introduction to Digital Filters 261
 Filter Basics 261
 How Information is Represented in Signals 265
 Time Domain Parameters 266
 Frequency Domain Parameters 268
 High-Pass, Band-Pass and Band-Reject Filters 271
 Filter Classification 274

Chapter 15. Moving Average Filters 277
 Implementation by Convolution 277
 Noise Reduction vs. Step Response 278
 Frequency Response 280
 Relatives of the Moving Average Filter 280
 Recursive Implementation 282

Chapter 16. Windowed-Sinc Filters 285
 Strategy of the Windowed-Sinc 285
 Designing the Filter 288
 Examples of Windowed-Sinc Filters 292
 Pushing it to the Limit 293
Chapter 17. Custom Filters 297
 Arbitrary Frequency Response 297
 Deconvolution 300
 Optimal Filters 307

Chapter 18. FFT Convolution 311
 The Overlap-Add Method 311
 FFT Convolution 312
 Speed Improvements 316

Chapter 19. Recursive Filters 319
 The Recursive Method 319
 Single Pole Recursive Filters 322
 Narrow-band Filters 326
 Phase Response 328
 Using Integers 332

Chapter 20. Chebyshev Filters 333
 The Chebyshev and Butterworth Responses 333
 Designing the Filter 334
 Step Response Overshoot 338
 Stability 339

Chapter 21. Filter Comparison 343
 Match #1: Analog vs. Digital Filters 343
 Match #2: Windowed-Sinc vs. Chebyshev 346
 Match #3: Moving Average vs. Single Pole 348

APPLICATIONS

Chapter 22. Audio Processing 351
 Human Hearing 351
 Timbre 355
 Sound Quality vs. Data Rate 358
 High Fidelity Audio 359
 Companding 362
 Speech Synthesis and Recognition 364
 Nonlinear Audio Processing 368

Chapter 23. Image Formation and Display 373
 Digital Image Structure 373
 Cameras and Eyes 376
 Television Video Signals 384
 Other Image Acquisition and Display 386
 Brightness and Contrast Adjustments 387
 Grayscale Transforms 390
 Warping 394
Chapter 24. Linear Image Processing 397
 Convolution 397
 3×3 Edge Modification 402
 Convolution by Separability 404
 Example of a Large PSF: Illumination Flattening 407
 Fourier Image Analysis 410
 FFT Convolution 416
 A Closer Look at Image Convolution 418

Chapter 25. Special Imaging Techniques 423
 Spatial Resolution 423
 Sample Spacing and Sampling Aperture 430
 Signal-to-Noise Ratio 432
 Morphological Image Processing 436
 Computed Tomography 442

Chapter 26. Neural Networks (and more!) 451
 Target Detection 451
 Neural Network Architecture 458
 Why Does it Work? 463
 Training the Neural Network 465
 Evaluating the Results 473
 Recursive Filter Design 476

Chapter 27. Data Compression 481
 Data Compression Strategies 481
 Run-Length Encoding 483
 Huffman Encoding 484
 Delta Encoding 486
 LZW Compression 488
 JPEG (Transform Compression) 494
 MPEG 501

Chapter 28. Digital Signal Processors 503
 How DSPs are different 503
 Circular Buffering 506
 Architecture of the Digital Signal Processor 509
 Fixed versus Floating Point 514
 C versus Assembly 520
 How Fast are DSPs? 526
 The Digital Signal Processor Market 531

Chapter 29. Getting Started with DSPs 535
 The ADSP-2106x family 535
 The SHARC EZ-KIT Lite 537
 Design Example: An FIR Audio Filter 538
 Analog Measurements on a DSP System 542
COMPLEX TECHNIQUES

Chapter 30. Complex Numbers .. 551
 The Complex Number System 551
 Polar Notation 555
 Using Complex Numbers by Substitution 557
 Complex Representation of Sinusoids 559
 Complex Representation of Systems 561
 Electrical Circuit Analysis 563

Chapter 31. The Complex Fourier Transform 567
 The Real DFT 567
 Mathematical Equivalence 569
 The Complex DFT 570
 The Family of Fourier Transforms 575
 Why the Complex Fourier Transform is Used 577

Chapter 32. The Laplace Transform 581
 The Nature of the s-Domain 581
 Strategy of the Laplace Transform 588
 Analysis of Electric Circuits 592
 The Importance of Poles and Zeros 597
 Filter Design in the s-Domain 600

Chapter 33. The z-Transform 605
 The Nature of the z-Domain 605
 Analysis of Recursive Systems 610
 Cascade and Parallel Stages 616
 Spectral Inversion 619
 Gain Changes 621
 Chebyshev-Butterworth Filter Design 623
 The Best and Worst of DSP 630

Glossary .. 631

Index ... 643
Goals and Strategies of this Book

The technical world is changing very rapidly. In only 15 years, the power of personal computers has increased by a factor of nearly one-thousand. By all accounts, it will increase by another factor of one-thousand in the next 15 years. This tremendous power has changed the way science and engineering is done, and there is no better example of this than Digital Signal Processing.

In the early 1980s, DSP was taught as a graduate level course in electrical engineering. A decade later, DSP had become a standard part of the undergraduate curriculum. Today, DSP is a basic skill needed by scientists and engineers in many fields. Unfortunately, DSP education has been slow to adapt to this change. Nearly all DSP textbooks are still written in the traditional electrical engineering style of detailed and rigorous mathematics. DSP is incredibly powerful, but if you can't understand it, you can't use it!

This book was written for scientists and engineers in a wide variety of fields: physics, bioengineering, geology, oceanography, mechanical and electrical engineering, to name just a few. The goal is to present practical techniques while avoiding the barriers of detailed mathematics and abstract theory. To achieve this goal, three strategies were employed in writing this book:

First, the techniques are explained, not simply proven to be true through mathematical derivations. While much of the mathematics is included, it is not used as the primary means of conveying the information. Nothing beats a few well written paragraphs supported by good illustrations.

Second, complex numbers are treated as an advanced topic, something to be learned after the fundamental principles are understood. Chapters 1-29 explain all the basic techniques using only algebra, and in rare cases, a small amount of elementary calculus. Chapters 30-33 show how complex math extends the power of DSP, presenting techniques that cannot be implemented with real numbers alone. Many would view this approach as heresy! Traditional DSP textbooks are full of complex math, often starting right from the first chapter.
Third, very simple computer programs are used. Most DSP programs are written in C, Fortran, or a similar language. However, learning DSP has different requirements than using DSP. The student needs to concentrate on the algorithms and techniques, without being distracted by the quirks of a particular language. Power and flexibility aren't important; simplicity is critical. The programs in this book are written to teach DSP in the most straightforward way, with all other factors being treated as secondary. Good programming style is disregarded if it makes the program logic more clear. For instance:

- a simplified version of BASIC is used
- line numbers are included
- the only control structure used is the FOR-NEXT loop
- there are no I/O statements

This is the simplest programming style I could find. Some may think that this book would be better if the programs had been written in C. I couldn't disagree more.

The Intended Audience

This book is primarily intended for a one year course in practical DSP, with the students being drawn from a wide variety of science and engineering fields. The suggested prerequisites are:

- A course in practical electronics: (op amps, RC circuits, etc.)
- A course in computer programming (Fortran or similar)
- One year of calculus

This book was also written with the practicing professional in mind. Many everyday DSP applications are discussed: digital filters, neural networks, data compression, audio and image processing, etc. As much as possible, these chapters stand on their own, not requiring the reader to review the entire book to solve a specific problem.

Support by Analog Devices

The Second Edition of this book includes two new chapters on Digital Signal Processors, microprocessors specifically designed to carry out DSP tasks. Much of the information for these chapters was generously provided by Analog Devices, Inc., a world leader in the development and manufacturing of electronic components for signal processing. ADI's encouragement and support has significantly expanded the scope of this book, showing that DSP algorithms are only useful in conjunction with the appropriate hardware.
Acknowledgements

A special thanks to the many reviewers who provided comments and suggestions on this book. Their generous donation of time and skill has made this a better work: Magnus Aronsson (Department of Electrical Engineering, University of Utah); Bruce B. Azimi (U.S. Navy); Vernon L. Chi (Department of Computer Science, University of North Carolina); Manohar Das, Ph.D. (Department of Electrical and Systems Engineering, Oakland University); Carol A. Dean (Analog Devices, Inc.); Fred DePiero, Ph.D. (Department of Electrical Engineering, CalPoly State University); Jose Fridman, Ph.D. (Analog Devices, Inc.); Frederick K. Duennebier, Ph. D. (Department of Geology and Geophysics, University of Hawaii, Manoa); D. Lee Fugal (Space & Signals Technologies); Filson H. Glanz, Ph.D. (Department of Electrical and Computer Engineering, University of New Hampshire); Kenneth H. Jacker, (Department of Computer Science, Appalachian State University); Rajiv Kapadia, Ph.D. (Department of Electrical Engineering, Mankato State University); Dan King (Analog Devices, Inc.); Kevin Leary (Analog Devices, Inc.); A. Dale Magoun, Ph.D. (Department of Computer Science, Northeast Louisiana University); Ben Mbugua (Analog Devices, Inc.); Bernard J. Maxum, Ph.D. (Department of Electrical Engineering, Lamar University); Paul Morgan, Ph.D. (Department of Geology, Northern Arizona University); Dale H. Mugler, Ph.D. (Department of Mathematical Science, University of Akron); Christopher L. Mullen, Ph.D. (Department of Civil Engineering, University of Mississippi); Cynthia L. Nelson, Ph.D. (Sandia National Laboratories); Branislava Perunicic-Drazenovic, Ph.D. (Department of Electrical Engineering, Lamar University); John Schmeelk, Ph.D. (Department of Mathematical Science, Virginia Commonwealth University); Richard R. Schultz, Ph.D. (Department of Electrical Engineering, University of North Dakota); David Skolnick (Analog Devices, Inc.); Jay L. Smith, Ph.D. (Center for Aerospace Technology, Weber State University); Jeffrey Smith, Ph.D. (Department of Computer Science, University of Georgia); Oscar Yanez Suarez, Ph.D. (Department of Electrical Engineering, Metropolitan University, Iztapalapa campus, Mexico City); and other reviewers who wish to remain anonymous.

This book is now in the hands of the final reviewer, you. Please take the time to give me your comments and suggestions. This will allow future reprints and editions to serve your needs even better. All it takes is a two minute e-mail message to: Smith@DSPguide.com. Thanks; I hope you enjoy the book.

Steve Smith
January 1999