
TMS320C62x Image/Video
Processing Library

Programmer’s Reference

Literature Number SPRU400
March 2000

Printed on Recycled Paper

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products
or to discontinue any product or service without notice, and advise customers to obtain the latest
version of relevant information to verify, before placing orders, that information being relied on
is current and complete. All products are sold subject to the terms and conditions of sale supplied
at the time of order acknowledgement, including those pertaining to warranty, patent
infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the
time of sale in accordance with TI’s standard warranty. Testing and other quality control
techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing
of all parameters of each device is not necessarily performed, except those mandated by
government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE
POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR
ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). TI SEMICONDUCTOR
PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR
USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.
INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY
AT THE CUSTOMER’S RISK.

In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards must be provided by the customer to minimize inherent or procedural
hazards.

TI assumes no liability for applications assistance or customer product design. TI does not
warrant or represent that any license, either express or implied, is granted under any patent right,
copyright, mask work right, or other intellectual property right of TI covering or relating to any
combination, machine, or process in which such semiconductor products or services might be
or are used. TI’s publication of information regarding any third party’s products or services does
not constitute TI’s approval, warranty or endorsement thereof.

Copyright 2000, Texas Instruments Incorporated

iiiRead This First

Preface

Read This First

About This Manual

Welcome to the TMS320C62x image/video Library, or IMGLIB for short. The
IMGLIB is a collection of 22 high-level optimized DSP functions for the
TMS320C62x device. This source code library includes C-callable functions
(ANSI-C language compatible) for general-purpose imaging functions that in-
clude compression, video processing, machine vision, and medical imaging
type applications.

This document contains a reference for the IMGLIB functions and is organized
as follows:

� Overview – an introduction to the TI ’62x IMGLIB
� Installation – information on how to install and rebuild IMGLIB
� IMGLIB Functions – a description of the routines in the library and how

they are organized
� IMGLIB Function Tables – a list of functions grouped by catagories
� IMGLIB Reference – a detailed description of each IMGLIB function
� Information about performance, warranty, and support

How to Use This Manual

The information in this document describes the contents of the TMS320C62x
IMGLIB in several different ways.

� Chapter 1 provides a brief introduction to the TI ’62x IMGLIB, shows the
organization of the routines contained in the library, and lists the features
and benefits of the IMGLIB.

� Chapter 2 provides information on how to install, use, and rebuild the TI
’C62x IMGLIB.

� Chapter 3 provides a brief description of each IMGLIB function.

How to Use This Manual

iv

� Chapter 4 provides information about each IMGLIB function in table for-
mat for easy reference. The information shown for each function includes
the syntax, a brief description, and a page reference for obtaining more
detailed information.

� Chapter 5 provides a list of the routines within the IMGLIB organized into
functional categories. The functions within each category are listed in al-
phabetical order and include arguments, descriptions, algorithms, bench-
marks, and special requirements.

� Appendix A describes performance considerations related to the ’62x
IMGLIB and provides information about warranty issues, software up-
dates, and customer support.

Notational Conventions

This document uses the following conventions:

� Program listings, program examples, and interactive displays are shown
in a special typeface .

� In syntax descriptions, the function or macro appears in a bold typeface
and the parameters appear in plainface within parentheses. Portions of a
syntax that are in bold should be entered as shown; portions of a syntax
that are within parentheses describe the type of information that should be
entered.

� Macro names are written in uppercase text; function names are written in
lowercase.

� The TMS320C62x is also referred to in this reference guide as the ’C62x.

Related Documentation From Texas Instruments

The following books describe the TMS320C6x devices and related support
tools. To obtain a copy of any of these TI documents, call the Texas Instru-
ments Literature Response Center at (800) 477–8924. When ordering, please
identify the book by its title and literature number. Many of these documents
can be found on the Internet at http://www.ti.com.

TMS320C62x/C67x Technical Brief (literature number SPRU197) gives an
introduction to the ’C62x/C67x digital signal processors, development
tools, and third-party support.

TMS320C6000 CPU and Instruction Set Reference Guide (literature
number SPRU189) describes the ’C6000 CPU architecture, instruction
set, pipeline, and interrupts for these digital signal processors.

Notational Conventions / Related Documentation From Texas Instruments

How to Use This Manual

vRead This First

TMS320C6201/C6701 Peripherals Reference Guide (literature number
SPRU190) describes common peripherals available on the
TMS320C6201/6701 digital signal processors. This book includes in-
formation on the internal data and program memories, the external
memory interface (EMIF), the host port interface (HPI), multichannel
buffered serial ports (McBSPs), direct memory access (DMA), enhanced
DMA (EDMA), expansion bus, clocking and phase-locked loop (PLL),
and the power-down modes.

TMS320C6000 Programmer’s Guide (literature number SPRU198)
describes ways to optimize C and assembly code for the TMS320C6000
DSPs and includes application program examples.

TMS320C6000 Assembly Language Tools User’s Guide (literature number
SPRU186) describes the assembly language tools (assembler, linker,
and other tools used to develop assembly language code), assembler
directives, macros, common object file format, and symbolic debugging
directives for the ’C6000 generation of devices.

TMS320C6000 Optimizing C Compiler User’s Guide (literature number
SPRU187) describes the ’C6000 C compiler and the assembly optimizer.
This C compiler accepts ANSI standard C source code and produces as-
sembly language source code for the ’C6000 generation of devices. The
assembly optimizer helps you optimize your assembly code.

TMS320C6000 Chip Support Library (literature number SPRU401)
describes the application programming interfaces (APIs) used to config-
ure and control all on-chip peripherals.

TMS320C62x DSP Library (literature number SPRU402) describes the 32
high-level, C-callable, optimized DSP functions for general signal proc-
essing, math, and vector operations.

Contents

vii

Contents

1 Introduction 1-1.
Introduces the TMS320C62x Image/Video Library (IMGLIB) and describes its features and
benefits.

1.1 Introduction to the TI ’62x IMGLIB 1-2.
1.2 Features and Benefits 1-2.
1.3 Software Routines 1-2.

2 Installing and Using IMGLIB 2-1.
Provides information on how to install, use, and rebuild the IMGLIB.

2.1 How to Install IMGLIB 2-2.
2.2 Using IMGLIB 2-3.

2.2.1 Calling an IMGLIB Function From C 2-3.
2.2.2 Calling an IMGLIB Function from Assembly 2-3.
2.2.3 How IMGLIB is Tested – Allowable Error 2-4.
2.2.4 How IMGLIB Deals with Overflow and Scaling Issues 2-4.
2.2.5 Code Composer Studio Users 2-4.

2.3 How to Rebuild IMGLIB 2-4.

3 IMGLIB Function Descriptions 3-1.
Provides a brief description of each IMGLIB function.

3.1 IMGLIB Functions Overview 3-2.
3.2 Compression/Decompression 3-2.
3.3 Image Analysis 3-4.
3.4 Picture Filtering/Format Conversions 3-6.

4 IMGLIB Function Tables 4-1.
Provides tables containing all IMGLIB functions, a brief description of each, and a page
reference for more detailed information.

4.1 IMGLIB Function Tables 4-2.

5 IMGLIB Reference 5-1.
Provides a list of the functions in the image library (IMGLIB) organized into functional
catagories.

5.1 Compression/Decompression 5-2.
5.2 Image Analysis 5-22.
5.3 Picture Filtering/Format Conversions 5-36.

Contents

viii

A Performance/Warranty and Support A-1.
Describes performance considerations related to the ’62x IMGLIB and provides information
about warranty, software updates, and customer support issues.

A.1 Performance Considerations A-2.
A.2 Warranty A-6.
A.3 IMGLIB Software Updates A-6.
A.4 IMGLIB Customer Support A-6.

B Glossary B-1.
Defines terms and abbreviations used in this book.

Tables

ixContents

Tables

4–1 Compression/Decompression 4-2.
4–2 Image Analysis 4-3.
4–3 Picture Filtering/Format Conversions 4-4.
A–1 ’C62x Routines Performance Data A-2.

1-1

Introduction

This chapter introduces the TMS320C62x Image/Video Library (IMGLIB) and
describes its features and benefits.

Topic Page

1.1 Introduction to the TI ’62x IMGLIB 1-2.

1.2 Features and Benefits 1-2.

1.3 Software Routines 1-2.

Chapter 1

Introduction to the TI ’62x IMGLIB

 1-2

1.1 Introduction to the TI ’62x IMGLIB

The TI ’C62x IMGLIB is an optimized Image/Video Processing Functions Li-
brary for C programmers using TMS320C62x devices. It includes many C-call-
able, assembly-optimized, general-purpose image/video processing routines.
These routines are typically used in computationally intensive real-time ap-
plications where optimal execution speed is critical. By using these routines,
you can achieve execution speeds considerably faster than equivalent code
written in standard ANSI C language. In addition, by providing ready-to-use
DSP functions, TI IMGLIB can significantly shorten your image/video process-
ing application development time.

1.2 Features and Benefits

The TI ’C62x IMGLIB contains commonly used image/video processing rou-
tines. Source code is provided that allows you to modify functions to match
your specific needs.

IMGLIB features include:

� Optimized assembly code routines

� C-callable routines fully compatible with the TI ’C6x compiler

� Benchmarks (cycles and code size)

� Tested against reference C model

NOTE: Although the code provided in this software release has been opti-
mized for ’C62x DSP devices, it will also be operational on other members of
the TI ’C6000 DSP family as new devices are made available.

1.3 Software Routines

The rich set of software routines included in the IMGLIB are organized into
three different functional catagories as follows:

� Compression and decompression

� Image Analysis

� Picture filtering/format conversions

Introduction to the TI ’62x IMGLIB / Features and Benefits / Software Routines

2-1

Installing and Using IMGLIB

This chapter provides information on how to install and rebuild IMGLIB.

Topic Page

2.1 How to Install IMGLIB 2-2.

2.2 Using IMGLIB 2-3.

2.3 How to Rebuild IMGLIB 2-4.

Chapter 2

How to Install IMGLIB

 2-2

2.1 How to Install IMGLIB

Note:

You should read the README.txt file for specific details of the release.

The archive has the following structure:

img62x.zip

 |

 +–– README.txt Top–level README file

 |

 +–– lib

 | |

 | +–– img62x.lib Library archive

 | +–– img62x.src Full source archive (asm and
headers)

 |

 +–– include

 | |

 | +–– header files Unpacked header files

 +–– doc

 |

 +–– img62xlib.pdf pdf document of API

First Step: De-Archive IMGLIB

The lib directory contains the library archive and the source archive. Please
install the contents of the lib directory in a directory pointed by your C_DIR en-
vironment. If you choose to install the contents in a different directory, make
sure you update the C_DIR environment variable,for example, by adding the
following line in autoexec.bat file:

SET C_DIR=<install_dir>/lib;<install_dir>/include;%C_DIR%

or under Unix/csh:

setenv C_DIR ”<install_dir>/lib;<install_dir>/
include; $C_DIR”

or under Unix/Bourne Shell:

C_DIR=”<install_dir>/lib;<install_dir>/include;$C_DIR” ;
export C_DIR

Using IMGLIB

2-3Installing and Using IMGLIB

2.2 Using IMGLIB

2.2.1 Calling an IMGLIB Function From C

In addition to correctly installing the IMGLIB software, you must follow these
steps to include an IMGLIB function in your code:

� Include the function header file corresponding to the IMGLIB function

� Link your code with img62x.lib

� Use a correct linker command file for the platform you use. Remember
most functions in img62x.lib are written assuming little-endian mode of op-
eration.

For example, if you want to call the fdct_8x8 IMGLIB function you would add

#include <fdct_8x8.h>

in your C file and compile and link using

cl6x main.c –z –o fdct_8x8_drv.out –lrts6201.lib
–limg62x.lib

Code Composer Studio Users

Assuming your C_DIR environment is correctly set-up (as mentioned in Sec-
tion 2.1, How to Install IMGLIB), you would have to add IMGLIB in the Code
Composer Studio environment by choosing img62x.lib from the menu Project
–> Add Files to Project. Also please make sure you link with the correct run-
time support library and IMGLIB by having the following lines in your linker
command file:

–lrts6201.lib

–limg62x.lib

2.2.2 Calling an IMGLIB Function from Assembly

The ’C62x IMGLIB functions were written to be used from C. Calling the func-
tions from Assembly language source code is possible as long as the calling-
function conforms to the Texas Instruments ’C62x C compiler calling conven-
tions. Please refer to Section 8, Runtime Environment, of TMS320C6000 Opti-
mizing C Compiler User’s Guide (Literature Number SPRU187).

How to Rebuild IMGLIB

 2-4

2.2.3 How IMGLIB is Tested – Allowable Error

IMGLIB is tested under Code Composer Studio environment against a refer-
ence C implementation. Test routines that deal with fixed-point type results ex-
pect identical results between Reference C implementation and its Assembly
implementation. The test routines that deals floating point typically allow an er-
ror margin of 0.000001 when comparing the results of reference C code and
IMGLIB assembly code.

2.2.4 How IMGLIB Deals with Overflow and Scaling Issues

The IMGLIB functions implement the exact functionality of the reference C
code. The user is expected to conform to the range requirements specified in
the function API and also additionally be responsible to restrict the input range
in such a way that the outputs do not overflow.

2.2.5 Code Composer Studio Users

If you set up a project Under Code Composer Studio, you could add IMGLIB
by choosing img62x.lib from the menu Project –> Add Files to Project. Also
please make sure you link with the correct run-time support library and IMGLIB
by having the following lines in your linker command file:

–lrts6201.lib

–limg62x.lib

The include directory contains the header files necessary to be included in the
C code when you call an IMGLIB function from C code.

2.3 How to Rebuild IMGLIB

If you would like to rebuild IMGLIB (for example, because you modified the
source file contained in the archive), you will have to use the mk6x utility as
follows:

 mk6x img62x.src –l img62x.lib

Using IMGLIB / How to Rebuild IMGLIB

3-1

IMGLIB Function Descriptions

This chapter provides a brief description of each IMGLIB function listed in three
catagories. It also gives representative examples of their areas of applicability.

Topic Page

3.1 IMGLIB Functions Overview 3-2.

3.2 Compression/Decompression 3-2.

3.3 Image Analysis 3-4.

3.4 Picture Filtering/Format Conversions 3-6.

Chapter 3

Compression/Decompression

 3-2

3.1 IMGLIB Functions Overview

The ’C62x IMGLIB provides a collection of C callable high performance rou-
tines that can serve as key enablers for a wide range of image/video process-
ing applications. These functions are representative of the high performance
capabilities of the ’C62x DSP. Some of the functions provided and their areas
of applicability are listed below. The areas of applicability are only provided as
representative examples; users of this software will surely conceive many
more creative uses.

3.2 Compression/Decompression

� fdct_8x8

� idct_8x8

Forward and Inverse DCT (Discrete Cosine Transform) functions,
fdct_8x8 and idct_8x8 respectively, are provided. These func-
tions have applicability in a wide range of compression standards
such as JPEG Encode/Decode, MPEG Video Encode/Decode, H.26x
Encode/Decode. These compression standards are used in diverse
end-applications such as:

� JPEG is used in printing, photography, security systems, etc.

� MPEG video standards are used in digital TV, DVD players, Set-
Top Boxes, Video-on-Demand systems, Video Disc applications,
Multimedia/Streaming Media applications, etc.

� H.26x standards are used in Video Telephony and some Stream-
ing Media applications.

Note that the Inverse DCT function performs an IEEE 1180-1990 com-
pliant inverse DCT, including rounding and saturation to signed 9-bit
quantities. The forward DCT provides rounding of output values for
improved accuracy. These factors can have significant effect on the
final result in terms of picture quality, and are important to consider
when implementing DCT based systems or comparing performance
of different DCT based implementations.

Compression/Decompression

3-3IMGLIB Function Descriptions

� mad_8x8

� mad_16x16

Functions 8x8 Minimum Absolute Difference, mad_8x8 , and 16x16
Minimum Absolute Difference, mad_16x16, are provided to enable
high performance Motion Estimation algorithms used in applications
such as MPEG Video Encode, or H.26x Encode. Video encoding is
useful in Video on Demand systems, Streaming Media systems, Vid-
eo Telephony, etc. Motion Estimation is typically one of the most com-
putation-intensive operations in video encoding systems and the high
performance enabled by the functions provided can enable significant
improvements in such systems.

� quantize

Quantization is an integral step in many image/video compression
systems, including those based on widely used variations of DCT
based compression such as JPEG, MPEG, and H.26x. The routine
quantize can be used in such systems to perform the quantization
step.

� wave_horz

� wave_vert

Wavelet processing is finding increasing use in emerging standards
such as JPEG2000 and MPEG-4, where it is typically used to provide
highly efficient Still Picture Compression. Various proprietary image
compression systems are also Wavelets based. Included in this re-
lease are utilities wave_horz and wave_vert for computing hori-
zontal and vertical wavelet transforms. Together, they can be used to
compute 2-D wavelet transforms for image data. The routines are flex-
ible enough, within documented constraints, to be able to accommo-
date a wide range of specific wavelets and image dimensions.

Image Analysis

 3-4

3.3 Image Analysis

� boundary

Boundary and Perimeter computation functions, boundary and pe-
rimeter, are provided. These are commonly used structural opera-
tors in Machine Vision applications.

� dilate_bin

� erode_bin

Morphological operators for performing Dilation and Erosion opera-
tions on binary images are provided, “dilate_bin” and “erode_bin” re-
spectively. Dilation and Erosion are the fundamental “building blocks”
of various morphological operations such as Opening, Closing, etc.
that can be created from combinations of Dilation and Erosion. These
functions are useful in Machine Vision and Medical Imaging applica-
tions.

� histogram

The routine histogram provides the ability to generate an image histo-
gram. An image histogram is basically a count of the intensity levels
(or some other statistic) in an image. For example, for a gray scale
image with 8-bit pixel intensity values, the histogram will consist of 256
bins corresponding to the 256 possible pixel intensities. Each bin will
contain a count of the number of pixels in the image that have that par-
ticular intensity value. Histogram processing (such as Histogram
Equalization or Modification) are used in areas such as Machine Vi-
sion systems and Image/Video Content Generation systems.

� perimeter

Boundary and Perimeter computation functions, boundary and pe-
rimeter, are provided. These are commonly used structural opera-
tors in Machine Vision applications.

� sobel

Edge Detection is a commonly used operation in Machine Vision sys-
tems. Many algorithms exist for edge detection, and one of the most
commonly used ones is Sobel Edge Detection. The routine sobel
provides an optimized implementation of this edge detection algo-
rithm.

Image Analysis

3-5IMGLIB Function Descriptions

� threshold

Different forms of Image Thresholding operations are used for various
reasons in image/video processing systems. For example, one form
of thresholding may be used to convert gray-scale image data to
binary image data for input to binary morphological processing.
Another form of thresholding may be used to clamp image data levels
into a desired range, and yet another form of thresholding may be
used to zero out low level perturbations in image data due to sensor
noise. This latter form of thresholding is addressed in the routine
threshold .

Picture Filtering/Format Conversions

 3-6

3.4 Picture Filtering/Format Conversions

� corr_3x3

� corr_gen

Correlation functions are provided to enable image matching. Image
matching is useful in applications such as Machine Vision, Medical
Imaging, Security/Defense. Two versions of correlation functions are
provided: corr_3x3 implements highly optimized correlation for
commonly used 3x3 pixel neighborhoods, and a more general ver-
sion, corr_gen , can implement correlation for user specified pixel
neighborhood dimensions within documented constraints.

� errdif_bin

Error Diffusion with binary valued output is useful in Printing applica-
tions. The most widely used Error Diffusion algorithm is the Floyd-
Steinberg algorithm. An optimized implementation of this algorithm is
provided in the function “errdif_bin”.

� median_3x3

Median filtering is used in Image Restoration, to minimize the effects
of impulsive noise in imagery. Applications can cover almost any area
where impulsive noise may be a problem, including Security/Defense,
Machine Vision, and Video Compression systems. Optimized imple-
mentation of median filter for 3x3 pixel neighborhood is provided in the
routine median_3x3 .

� pix_expand

� pix_sat

The routines pix_expand and pix_sat respectively expand 8-bit
pixels to 16-bit quantities by zero extension, and saturate 16-bit
signed numbers to 8-bit unsigned numbers. They can be used to pre-
pare input and output data for other routines such as the horizontal
and vertical scaling routines.

Picture Filtering/Format Conversions

3-7IMGLIB Function Descriptions

� scale_horz

� scale_vert

Horizontal and Vertical Scaling functions, scale_horz and
scale_vert , are provided. These functions implement Polyphase
FIR Filtering for horizontal and vertical re-sizing of images. Within doc-
umented constraints, the functions are flexible enough to be able to
accommodate a wide range of image dimensions, scale factors, and
numbers of filter taps. These functions may be used in concert to im-
plement 2-D image resizing, or individually for 1-D image resizing, de-
pending on the application. Also provided are support functions for
Pixel Expansion and Saturation (see explanations below) that may be
used with the scaling functions.

Scaling functions are universally used in image/video processing ap-
plications; that is, wherever there is a need to convert one image size
to another. Applications include systems for displays, printing, pho-
tography, security, digital TV, video telephony, defense, streaming
media, etc.

4-1

IMGLIB Function Tables

This chapter provides tables containing all IMGLIB functions, a brief descrip-
tion of each, and a page reference for more detailed information.

Topic Page

4.1 IMGLIB Function Tables 4-2.

Table 4–1 Compression/Decompression 4-2.

Table 4–2 Image Analysis 4-3.

Table 4–3 Picture Filtering/Format Conversions 4-4.

Chapter 4

IMGLIB Function Tables

 4-2

4.1 IMGLIB Function Tables

The routines included in the image library are organized into three functional
categories and listed below in alphabetical order.

Table 4–1. Compression/Decompression

Function Description Page

void fdct_8x8(short fdct_data[], unsigned num_fdcts) Forward Discrete Cosine
Transform (FDCT)

5-2

void idct_8x8(short idct_data[], unsigned num_idcts) Inverse Discrete Cosine
Transform (IDCT)

5-4

void mad_8x8(void *ref_data, void * src_data, int pitch,
void *motvec)

8x8 Minimum Absolute Difference 5-7

void mad_16x16(void *ref_data, void * src_data, int pitch,
void *motvec)

16x16 Minimum Absolute
Difference

5-9

void quantize (short *data, int num_blks, int blk_sz, const
short *recip_tbl, int q_pt)

Matrix Quantization with
Rounding

5-12

void wave_horz (short *in_data, short *qmf, short *mqmf,
short *out_data, int cols)

Horizontal Wavelet Transform 5-14

void wave_vert (short *in_data[], short *qmf,short
*mqmf,short *out_ldata,short *out_hdata,int cols,int M)

Vertical Wavelet Transform 5-18

IMGLIB Function Tables

4-3IMGLIB Function Tables

Table 4–2. Image Analysis

Function Description Page

void boundary(unsigned char *in_data, int rows, int cols,
int *XY, int *out_data)

Boundary Structural Operator 5-22

void dilate_bin(unsigned char *in_data, unsigned char
*out_data, char *mask, int cols)

3x3 Binary Dilation 5-24

void erode_bin(unsigned char *in_data, unsigned char
*out_data, char *mask, int cols)

3x3 Binary Erosion 5-25

void histogram (unsigned char *in_data, int n, int
accumulate, unsigned short *t_hist, unsigned short *hist)

Histogram Computation 5-27

void perimeter (unsigned char *in_data, int cols, unsigned
char *out_data)

Perimeter Structural Operator 5-30

void sobel(const unsigned char *in_data, unsigned char
*out_data, short cols, short rows)

Sobel Edge Detection 5-32

void threshold(const unsigned char *in_data, unsigned
char *out_data, short cols, short rows, unsigned char
threshold)

Image Thresholding 5-33

IMGLIB Function Tables

 4-4

Table 4–3. Picture Filtering/Format Conversions

Function Description Page

void corr_3x3(const unsigned char *in_data, unsigned
char *out_data, int rows, int cols, unsigned char *mask,
short roundval)

3x3 Correlation with Rounding 5-36

void corr_gen(short *in_data, short *h, short *out_data, int
m, int cols)

Generalized Correlation 5-39

void errdif_bin(unsigned char errdif_data[], int cols, int
rows, short err_buf[], unsigned char thresh)

Error Diffusion, Binary Output 5-41

void median_3x3(unsigned char *in_data, int cols,
unsigned char *out_data)

3x3 Median Filter 5-45

void pix_expand(int n, unsigned char *in_data, short
*out_data)

Pixel Expand 5-46

void pix_sat(int n, short *in_data, unsigned char
*out_data)

Pixel Saturation 5-47

void scale_horz(unsigned short *in_data, unsigned int
n_x, short *out_data, unsigned int n_y, short *hh,
unsigned int l_hh, unsigned int n_hh, short * patch)

Horizontal Scaling 5-49

void scale_vert(short *in_data, short *out_data, int cols,
short *ptr_hh, short *mod_hh, int l_hh, int start_line)

Vertical Scaling 5-51

5-1

IMGLIB Reference

This chapter provides a list of the routines within the IMGLIB orga-
nized into functional categories. The functions within each category
are listed in alphabetical order and include arguments, descriptions,
algorithms, benchmarks, and special requirements.

Topic Page

5.1 Compression/Decompression 5-2.

5.2 Image Analysis 5-22.

5.3 Picture Filtering/Format Conversions 5-36.

Chapter 5

Compression/Decompression

 5-2

5.1 Compression/Decompression

5.1.1 Forward Discrete Cosine Transform (FDCT)fdct_8x8

void fdct_8x8(short fdct_data[], unsigned num_fdcts)

Arguments

fdct_data pointer to ‘num_fdct’ 8x8 blocks of image data.

num_fdcts number of FDCTs to perform. Note that fdct_8x8
requires exactly ‘num_fdcts’ blocks of storage start-
ing at the location pointed to by ‘fdct_data’, since
the transform is executed completely in-place.

Description The routine fdct_8x8() implements the Forward Discrete Cosine
Transform (FDCT). Output values are rounded, providing improved
accuracy. Input terms are expected to be signed 11Q0 values, produc-
ing signed 15Q0 results. A smaller dynamic range may be used on the
input, producing a correspondingly smaller output range. Typical ap-
plications include processing signed 9Q0 and unsigned 8Q0 pixel
data, producing signed 13Q0 or 12Q0 outputs, respectively. No satu-
ration is performed.

Algorithm The Forward Discrete Cosine Transform (FDCT) is described by the
following equation:

I(u, v) �
�(u)�(v)

4

�
7
�

x � 0

7
�

y � 0
i(x, y) cos�(2x � 1)u�

16
� cos�(2y � 1)v�

16
�

where

z � 0 � �(z) � 1
2�

z � 0 � �(z) � 1

i(x,y) : pixel values (spatial domain)

I(u,v) : transform values (frequency domain)

This particular implementation uses the Chen algorithm for express-
ing the FDCT. Rounding is performed to provide improved accuracy.

Compression/Decompression

5-3IMGLIB Reference

Special Requirements

� Input terms are expected to be signed 11Q0 values, producing
signed 15Q0 results. Larger inputs may result in overflow.

� The fdct_8x8 routine accepts a list of 8x8 pixel blocks and per-
forms FDCTs on each. Pixel blocks are stored contiguously in me-
mory. Within each pixel block, pixels are expected in left-to-right,
top-to-bottom order.

� Results are returned contiguously in memory. Within each block,
frequency domain terms are stored in increasing horizontal fre-
quency order from left to right, and increasing vertical frequency
order from top to bottom.

� Input values are stored in shorts, and may be in the range
[–512,511]. Larger input values may result in overflow.

� Stack is aligned to a word boundary.

Implementation Notes

� The code is setup to provide an early exit if it is called with
num_fdcts = 0. In such case it will run for 13 cycles.

� Both vertical and horizontal loops have been software pipelined.

� For performance, portions of the optimized assembly code out-
side the loops have been inter-scheduled with the prolog and epi-
log code of the loops. Also, twin stack-pointers are used to accel-
erate stack accesses. Finally, pointer values and cosine term reg-
isters are reused between the horizontal and vertical loops to re-
duce the impact of pointer and constant re-initialization.

� To save code size, prolog and epilog collapsing have been per-
formed in the optimized assembly code to the extent that it does
not impact performance. Also, code outside the loops has been
scheduled to pack as tightly into fetch packets as possible to avoid
alignment padding NOPs.

� To reduce register pressure and save some code, the horizontal
loop uses the same pair of pointer registers for both reading and
writing. The pointer increments are on the loads to permit prolog
and epilog collapsing, since loads can be speculated.

� Bank Conflicts: No bank conflicts occur.

Compression/Decompression

 5-4

� Endian: The code is ENDIAN NEUTRAL.

� Interruptibility: The code is interrupt-tolerant but not interrupt-
ible.

Benchmarks

Cycles 160 * num_fdcts + 48

For num_fdtcs = 6, cycles = 1008
For num_fdcts = 24, cycles = 3888

Code size 1216 bytes

5.1.2 Inverse Discrete Cosine Transform (IDCT)idct_8x8

void idct_8x8(short idct_data[], unsigned num_idcts)

Arguments

idct_data pointer to ‘num_idcts’ 8x8 blocks of DCT coeffi-
cients, plus an additional 8x8 block for scratch

num_idcts number of IDCTs to perform. Note that idct_8x8 re-
quires num_idcts + 1 blocks of storage starting at
the location pointed to by ‘idct_data’

Description The routine idct_8x8() performs an IEEE 1180-1990 compliant IDCT,
including rounding and saturation to signed 9-bit quantities. The input
coefficients are assumed to be signed 12-bit cosine terms.

The function idct_8x8() performs a series of 8x8 IDCTs on a list of 8x8
blocks.

Algorithm The Inverse Discrete Cosine Transform (IDCT) is described by the fol-
lowing equation:

i(x, y) � 1
4

7
�

u � 0

7
�

v � 0
I(u, v) cos�(2x � 1)u�

16
� cos�(2y � 1)v�

16
�

where

z � 0 � �(z) � 1
2�

z � 0 � �(z) � 1

i(x,y) : pixel values (spatial domain)

Compression/Decompression

5-5IMGLIB Reference

i(x,y) : pixel values (spatial domain)

I(u,v) : transform values (frequency domain)

This particular implementation uses the Even-Odd Decomposition al-
gorithm for expressing the IDCT. Rounding is performed so that the
result meets the IEEE 1180-1990 precision and accuracy specifica-
tion.

Special Requirements

� Input DCT coefficients are expected to be in the range +2047 to
–2048 inclusive. Output terms are saturated to the range +255 to
–256 inclusive. i.e. inputs are in a signed 12-bit range and outputs
are saturated to a signed 9-bit range.

� The code is setup to provide an early exit if it is called with
num_idcts = 0. In such case it will run for 35 cycles.

� The idct_8x8 routine accepts a list of 8x8 DCT coefficient blocks
and performs IDCTs on each. Coefficient blocks are stored contig-
uously in memory. Within each block, frequency domain terms are
stored in increasing horizontal frequency order from left to right,
and increasing vertical frequency order from top to bottom.

� Results are returned contiguously in memory. Within each pixel
block, pixels are returned in left-to-right, top-to-bottom order.

� The idct_data[] array should be aligned to a 32-bit (word) bound-
ary.

� The routine requires one 8x8-block’s worth of extra storage at the
end of the list of DCT blocks. The caller must provide room for
’num_idcts + 1’ blocks of data in the idct_data[] array. The original
contents of the extra block are ignored and overwritten with inter-
mediate results by idct_8x8().

� The optimized assembly code requires ’(168 * num_idcts) + 62’
cycles to process ’num_idcts’ blocks. When ’num_idcts’ is zero,
the function takes an early exit and runs for only 35 cycles (again,
including overhead).

Implementation Notes

� The idct_8x8() function returns its results in-place, although it
generates intermediate results out-of-place. As a result, when
processing N blocks, it requires N+1 blocks of storage, with the

Compression/Decompression

 5-6

extra block occurring immediately after the valid input data. The
initial value of this extra block is ignored, as its value is overwritten
with the intermediate results of the IDCT.

� For performance, portions of the optimized code outside the loops
have been inter-scheduled with the prolog and epilog code of the
loops. Also, twin stack-pointers are used to accelerate stack ac-
cesses. Finally, pointer values and cosine term registers are re-
used between the horizontal and vertical loops to save the need
for messy pointer and constant re-initialization.

� To save code size, prolog and epilog collapsing have been per-
formed to the extent that it does not impact performance. Also,
code outside the loops has been scheduled to pack as tightly into
fetch packets as possible to avoid alignment padding NOPs.

� The IDCTs cannot be performed completely in-place due to the
transpose that each pass performs. In order to save data memory,
the horizontal pass works from the end of the array towards the
beginning, writing its result one IDCT block later in memory, thus
performing the IDCT nearly-in-place. The vertical pass performs
its IDCTs in the opposite direction, working from the start of the
array towards the end, writing the results in-place. A nice side ef-
fect of this is that the pointer values at the end of the horizontal
loop are a fixed offset relative to their required values for the verti-
cal loop, regardless of the number of IDCTs performed. This
makes the pointer re-initialization exceptionally cheap.

� Bank Conflicts: No bank conflicts occur.

� Endian: The code is LITTLE ENDIAN.

� Interruptibility: The code is interrupt-tolerant, but not interrupt-
ible.

Benchmarks

Cycles (168 * num_idcts) + 62

For num_idcts = 6, cycles = 1070
For num_idcts = 24, cycles = 4094

Code size 1344 bytes

Compression/Decompression

5-7IMGLIB Reference

5.1.3 8x8 Minimum Absolute Differencemad_8x8

void mad_8x8(void *ref_data, void * src_data, int pitch, void *motvec)

Arguments

ref_data pointer to array of image pixels that constitute a ref-
erence image, with H columns and V rows

src_data pointer to 8x8 source image pixels

pitch linearizes 2-D array to 1-D array based on the rela-
tion: 1d[(i*pitch)+j] = 2d[i][j]

motvec motion vector (output)

first element motvec[0]: packed coordinates h,v

second element: madval

Description The routine mad_8x8() returns the location of the minimum absolute
difference (MAD) between an 8x8 search block and some point in a
search window of size HxV. The location is returned as ‘h’ and ‘v’ value
packed as two 16-bit quantities in a 32-bit int. The corresponding
MAD value is also returned.

Algorithm Behavioral C code for the routine mad_8x8() is provided below:
void mad_8x8(unsigned char *ref_data, unsigned char *src_data, unsigned int pitch,
unsigned int *motvec)

{

unsigned int i, j, k, i2;

unsigned int bptch, vptch;

unsigned int matpos, pitch_8;

unsigned int matval;

unsigned int accm0;

short s0;

short img_i0, srcIm;

int mh, mv;

int matx, maty;

bptch = (8–1) * pitch;

vptch = (V*pitch) – 1;

matval = 0xffffffff;

pitch_8 = pitch – 8;

k = 0;

Compression/Decompression

 5-8

 for(mh = 0; mh < H; mh++)

 {

 for (mv = 0; mv < V; mv++)

 {

accm0 = 0;

j = 0;

for (i = 0; i < 8; i++)

 {

 for (i2 = 0; i2 < 8; i2++)

 {

 srcIm = src_data[j];

 img_i0 = ref_data[k];

 s0 = (img_i0 – srcIm);

 accm0 += abs(s0);

 j++;

 k++;

 }

 k+= pitch_8;

 }

k –= bptch;

if (accm0 < matval)

{

matval = accm0;

matx = mh;

maty = mv;

}

 }

 k –= vptch;

 }

/***/

/* Return packed x,y coordinates corresponding to minimum MAD. */

/* Also return the minimum MAD as matval. */

/***/

 matpos = (0xffff0000 & (matx << 16)) | (0x0000ffff & maty);

 motvec[0] = matpos;

 motvec[1] = matval;

}

Special Requirements

� It is assumed that src_data and ref_data do not alias in memory.

� No special alignment of byte-level src_data or ref_data is ex-
pected.

Compression/Decompression

5-9IMGLIB Reference

Implementation Notes

� The inner loop is unrolled four times, the outer loop is unrolled on-
ce. Delay slot stuffing and outer loop branch overhead are mini-
mized.

� Motion vectors are contained in the array ‘motvec’ in packed coor-
dinates h:v respectively representing horizontal and vertical vec-
tor components. ‘motvec’ array also contains the MAD value.

motvec[0]: hl:vl

motvec[1]: madval

� Bank Conflicts: At most one bank conflict can occur over the en-
tire kernel.

� Endian: The code is LITTLE ENDIAN.

� Interruptibility: The code is interrupt-tolerant, but not interrupt-
ible.

Benchmarks

Cycles 62 * H * V + 21

For H = 4, V = 4, cycles = 1013
For H = 64, V = 32, cycles = 126,997

Code size 768 bytes

5.1.4 16x16 Minimum Absolute Differencemad_16x16

void mad_16x16(void *ref_data, void * src_data, int pitch,
void *motvec)

Arguments

ref_data pointer to array of image pixels that constitutes a
reference image, with H columns and V rows

src_data pointer to 16x16 source image pixels

pitch linearizes 2-D array to 1-D array based on the rela-
tion: 1d[(i*pitch)+j] = 2d[i][j]

motvec motion vector (output)

first element motvec[0]: packed coordinates h,v

second element: madval

Compression/Decompression

 5-10

Description The routine mad_16x16 returns the location of the minimum absolute
difference (MAD) between an 16x16 search block and some point in
a search window of size HxV. The location is returned as ‘h’ and ‘v’ val-
ue packed as two 16-bit quantities in a 32-bit int. The corresponding
MAD value is also returned.

Algorithm Behavioral C code for the routine mad_16x16() is provided below:
void mad_16x16(unsigned char *ref_data, unsigned char *src_data,
unsigned int pitch, unsigned int *motvec)
{
 unsigned int i, j, k, i2;
 unsigned int bptch, vptch;
 unsigned int matpos, pitch_16;
 unsigned int matval;
 unsigned int accm0;
 short s0;
 short img_i0, srcIm;
 int mh, mv;
 int matx, maty;
 bptch = (16–1) * pitch;
 vptch = (V*pitch) – 1;
 matval = 0xffffffff;
 pitch_16 = pitch – 16;
 k = 0;
 for(mh = 0; mh < H; mh++)
 {
 for (mv = 0; mv < V; mv++)
 {
 accm0 = 0;
 j = 0;
 for (i = 0; i < 16; i++)
 {
 for (i2 = 0; i2 < 16; i2++)
 {
 srcIm = src_data[j];
 img_i0 = ref_data[k];

 s0 = (img_i0 – srcIm);
 accm0 += abs(s0);
 j++;
 k++;
 }

 k += pitch_16;
 }
 k –= bptch;
 if (accm0 < matval)

Compression/Decompression

5-11IMGLIB Reference

 {

 matval = accm0;
 matx = mh;

 maty = mv;
 }

 }
 k –= vptch;

 }
 /**/
 /* Return packed x,y coordinates corresponding to */

 /* minimum MAD. Also return the minimum MAD as */
 /* matval. */

 /**/
 matpos = (0xffff0000 & (matx << 16)) | (0x0000ffff & maty);

 motvec[0] = matpos;
 motvec[1] = matval;

}

Special Requirements No special alignment of src_data or ref_data is expected.

Implementation Notes

� The inner loop is unrolled four times, and the outer loop is unrolled
once in the optimized assembly code. Delay slot stuffing and out-
er loop branch overhead are minimized.

� Motion vectors are contained in the array ‘motvec’ in packed coor-
dinates h:v respectively representing horizontal and vertical vec-
tor components. ‘motvec’ array also contains the MAD value.

motvec[0]: hl:vl

motvec[1]: madval

� Bank Conflicts: At most one bank conflict can occur over the en-
tire function.

� Endian : The code is LITTLE ENDIAN.

� Interruptibility: The code is interrupt-tolerant, but not interrupt-
ible.

Benchmarks

Cycles 231*H*V + 21

For H = 4, V = 4, cycles = 3717
For H = 64, V = 32, cycle = 473,109

Code size 768 bytes

Compression/Decompression

 5-12

5.1.5 Matrix Quantization with Roundingquantize

void quantize (short *data, int num_blks, int blk_size,
const short *recip_tbl, int q_pt)

Arguments

data pointer to data to be quantized

num_blks number of 64-element blocks processed

blk_size block size, multiple of 16

recip_tbl pointer to Quantization Values (reciprocals)

q_pt Q-point of Quantization values

Description The routine quantize() quantizes a list of blocks by multiplying their
contents with a second block of values that contains reciprocals of the
quantization terms. This step corresponds to the quantization that is
performed in 2-D DCT-based compression techniques, although
quantize() may be used on any signed 16-bit data using signed 16-bit
quantization terms.

quantize() merely multiplies the contents of the quantization array with
the data being quantized. Therefore, it may be used for inverse quanti-
zation as well, by setting the Q-point appropriately.

Algorithm Behavioral C code for the routine quantize() is provided below:
void quantize (short *data, int num_blks, int blk_size, const short *recip_tbl,
int q_pt)

{

short recip;

int i, j, k, quot, round;

/***/

/* Set rounding term as 0.5, effectively */
/***/

round = q_pt ? 1 << (q_pt – 1) : 0;
/***/

/* Outer loop: Step between quant matrix elements. */

/***/

for (i = 0; i < blk_size; i++)

{

Compression/Decompression

5-13IMGLIB Reference

/***/
/*Load a reciprocal and point to appropriate element of block */
/***/

recip = recip_tbl[i];

k = i;

/***/
/*Inner loop: Step between blocks of elements, quantizing */
/***/

for (j = 0; j < num_blks; j++)
{

quot = data[k] * recip + round;
data[k] = quot >> q_pt;
k += blk_size;

}
}

}

Special Requirements

� The number of blocks, num_blks, must be at least 1. The block
size (number of elements in each block) must be at least 16, and
a multiple of 16. The Q-point, q_pt, controls rounding and final
truncation; it must be in the range from 0 <= q_pt <= 31.

� Both input arrays, data[] and recip_tbl[], must be word aligned.

� The data[] array must be ’num_blks * blk_size’ elements, and the
recip_tbl[] array must be ’blk_size’ elements.

� The block size, blk_size, must be a multiple of 16.

� The number of blocks, num_blks, must be at least 1.

Implementation Notes

� The outer loop is unrolled 16 times to allow greater amounts of
work to be performed in the inner loop.

� Reciprocals and data terms are loaded in pairs with word-wide
loads, making better use of the available memory bandwidth.

� The outer loop has been interleaved with the prolog and epilog of
the inner loop.

� Epilog code from the inner loop has been moved into the exit-code
delay slots through creative use of branch delay slots.

Compression/Decompression

 5-14

� Twin stack pointers have been used to speed up stack accesses.

� The inner loop steps through individual blocks, while the outer
loop steps through reciprocals for quantization. This eliminates
redundant loads for the quantization terms.

� The direction of travel for the inner loop oscillates with each itera-
tion of the outer loop to simplify pointer updating in the outer loop
and reduce register pressure. (e.g. in the first iteration of the outer
loop, the inner loop steps forward through memory; in the second
iteration of the outer loop, the inner loop steps backwards through
memory, etc.)

� A total of 14 words of stack frame are used for saving the Save-
On-Entry registers.

� Bank Conflicts: No bank conflicts occur, regardless of the rela-
tive orientation of recip_tbl[] and data[].

� Endian: The code is LITTLE ENDIAN.

� Interruptibility: The code is interrupt-tolerant but not interrupt-
ible.

Benchmarks

Cycles (blk_size/16) * (4 + num_blks * 12) + 26

For blk_size = 64, num_blks = 8, cycles = 426
For blk_size = 256, num_blks = 24, cycles = 4696

Code size 1024 bytes

5.1.6 Horizontal Wavelet Transformwave_horz

void wave_horz (short *in_data, short *qmf, short *mqmf,
short *out_data, int cols)

Arguments

in_data pointer to one row of input pixels

qmf pointer to qmf filter-bank for low-pass filtering

mqmf pointer to mirror qmf filter bank for high-pass filter-
ing

out_data pointer to row of detailed/reference decimated out-
puts

cols number of columns in the input image

Compression/Decompression

5-15IMGLIB Reference

Description The routine wave_horz() performs a 1-D Periodic Orthogonal Wavelet
decomposition. It also performs the row decomposition component of
a 2D wavelet transform. An input signal x[n] is low pass and high pass
filtered and the resulting signals decimated by factor of two. This re-
sults in a reference signal r1[n] which is the decimated output obtained
by dropping the odd samples of the low pass filter output and a detail
signal d[n] obtained by dropping the odd samples of the high-pass fil-
ter output. A circular convolution algorithm is implemented and hence
the wavelet transform is periodic. The reference signal and the detail
signal are each half the size of the original signal.

Algorithm Behavioral C code for the routine wave_horz() is provided below:

#define Qpt 15

#define Qr 16384

void wave_horz(short *in_data, short *qmf, short *mqmf, short *out_data,
int cols)

{

 int i;

 short *xptr = in_data;

 short *x_end = &in_data[cols – 1];

 int j, sum, prod;

 short xdata, hdata;

 short *filt_ptr;

 int M = 8;

 /**/

 /* iters: number of iterations = half the width of the input line */

 /* xstart: starting point for the high pass filter input data */

 /**/

 int iters = cols;

 short *xstart = in_data + (cols – M) + 2;

 /**/

 /* Since the output of the low pass filter is decimated by */

 /* eliminating odd output samples, the loop counter i */

 /* increments by 2 for every iteration of the loop. Let the */

 /* input data be �d0, . . . , d�7
� and the low pass filter be �h0, . . . , h7

� */
 /* Outputs y 0, y 1, . . . , . . . are generated as: */

 /* y 0 � h0d0 � h1d1 � h2d2 � h3d3 � h4d4 � h5d5 � h6d6 � h7d7 */

 /* y 1 � h0d2 � h1d3 � h2d4 � h3d5 � h4d6 � h5d7 � h6d8 � h7d9 */

 /* If the input array access d goes past the end of the array */

 /* the pointer is wrapped around. Since the filter is in floating */

 /* point it is implemented in Q15 math. Qr is the associated */

 /* round value. */

 /**/

Compression/Decompression

 5-16

 for (i = 0; i < iters; i+= 2)

 {

 sum = Qr;

 xptr = in_data + i;

 for (j = 0; j < M; j++)

 {

 xdata = *xptr++;

 hdata = qmf[j];

 prod = xdata * hdata;

 sum += prod;

 if (xptr > x_end) xptr = in_data;

 }

 *out_data++ = (sum >> Qpt);

 }

/**/

/* Since the output of the high pass filter is decimated by */

/* eliminating odd output samples, the loop counter I */

/* increments by 2 for every iteration of the loop. Let the */

/* input data be �d0, d1, . . . , dN�1
� where N = cols and M = 8 */

/* Let the high pass filter be �g0, . . . , g7
�. */

/* Outputs y 0, y 1, . . . are generated as: */

/* y 0 � g7dN�M�2 � g6dN�M�1 � . . . � g0d1 */

/* y 1 � g7dN�M�2 � g6dN�M�1 � . . . � g0d1 */

/* */

/* If the input array access d goes past the end of the array */

/* the pointer is wrapped around. Since the filter is in floating */

/* point it is implemented in Q15 math. Filt_ptr points to the */

/* end of the high–pass filter array and moves in reverse */

/* direction. */

/**/

 for (i = 0; i < iters ; i+=2)

 {

 sum = Qr;

 filt_ptr = mqmf + (M – 1);

 xptr = xstart;

 xstart += 2;

 if (xstart > x_end) xstart = in_data;

 for (j = 0; j < M; j++)

 {

 xdata = *xptr++;

 hdata = *filt_ptr––;

 prod = xdata * hdata;

Compression/Decompression

5-17IMGLIB Reference

 if (xptr > x_end) xptr = in_data;
 sum += prod;
 }

 *out_data++ = (sum >> Qpt);
 }
}

Special Requirements

� This function assumes that the number of taps for the qmf and
mqmf filters is 8, and that the filter coefficients are word aligned.

� Input data is assumed to be word aligned so that word-wide loads
may be performed.

� This function assumes that filter coefficients are maintained as
shorts (16-bits).

� It is also assumed that input data is an array of shorts, to allow for
re-use of this function to perform Multi Resolution Analysis where
the output of this code is fedback as input to an identical next
stage.

� The transform is a dyadic wavelet, requiring the number of image
columns to be a power of 2.

Implementation Notes

� The main ideas used for optimizing the code include issuing one
set of reads to the data array and performing low-pass and high
pass filtering together to maximize the number of multiplies. The
last six elements of the low-pass filter and the first six elements
of the high-pass filter use the same input. This is used to appropri-
ately change the output pointer to the low-pass filter after six itera-
tions. However for the first six iterations pointer wrap-around can
occur and hence this creates a dependency. Pre-reading those
six values outside the array prevents the checks that introduce
this dependency. In addition the input data is read as word wide
quantities and the low-pass and high-pass filter coefficients are
stored in registers allowing for the input loop to be completely un-
rolled. Thus the assembly code has only one loop. A predication
register is used to reset the low-pass output pointer after three it-
erations. The merging of the loops in this fashion allows for the
maximum number of multiplies with the minimum number of
reads.

Compression/Decompression

 5-18

� This code can implement the Daubechies D4 filterbank for analy-
sis with four vanishing moments. The length of the analyzing low-
pass and high-pass filters is 8 in this case.

� Bank Conflicts : The code has no bank conflicts because data re-
use reduces the number of loads and stores in the loop to 3.

� Endian: The code is ENDIAN NEUTRAL.

� Interruptibility: The code is interrupt-tolerant, but not interrupt-
ible.

Benchmarks

Cycles (4 * cols) + 5

For cols = 256, cycles = 1029
For cols = 512, cycles = 2058

Code size 640 bytes

5.1.7 Vertical Wavelet Transformwave_vert

void wave_vert (short *in_data[], short *qmf, short *mqmf,
short *out_ldata, short *out_hdata, int cols, int M)

Arguments

in_data pointer to an array of pointer for input data line buff-
ers

qmf pointer to qmf filter-bank for low-pass filtering

mqmf pointer to mirror qmf filter bank for high-pass filter-
ing

out_ldata pointer to lowpass filtered outputs

out_hdata pointer to highpass filtered outputs

cols width of each line in the input buffer

M number of filter taps (always 8 in this implementa-
tion)

Description The routine wave_vert() performs the vertical pass of 2-D wavelet
transform. It performs a vertical filter on 8 rows which are pointed to
by the pointers contained in an array of pointers. It produces two lines
worth of output, one being the low-pass and the other being the high
pass filtered result. The vertical filter is traversed over the entire width

Compression/Decompression

5-19IMGLIB Reference

of the line and the low-pass and high-pass filtering are performed to-
gether. This implies that the low-pass and high-pass filters be over-
lapped in execution so that the input data array may be read once and
both filters can be executed in parallel. This requires the caller to im-
plement a C code close to what is presented here.

Algorithm Behavioral C code for the routine wave_vert() is provided below:

#define Qpt 15
#define Qr 16384
#define Qs 32767
void wave_vert(short *in_data[], short *qmf, short *mqmf, short *out_ldata,
short *out_hdata, int cols, int M)
{
 int i, j;
 int sum_h, sum_l;
 int prod_h, prod_l;
 short xdata, hdata, ldata;
 short *filt_ptr;
 /**/
 /* Low–Pass filter: in_data contains 8 pointers which point to */
 /* input lines. The filters are placed vertically and input data */
 /* is read from 8 separate lines. Qr is round value for Q15 */
 /* math. M is assumed to be 8 and is the number of filter */
 /* taps for D4. Low–Pass filter output is in out_ldata. */
 /**/
 for (i = 0; i < cols; i++)
 {
 sum_l = Qr;
 filt_ptr = qmf;
 for (j = 0; j < M; j++)
 {
 xdata = in_data[j][i];
 ldata = *filt_ptr++;
 prod_l = xdata * ldata;
 sum_l += prod_l;
 }
 *out_ldata++ = (sum_l >> Qpt);
 }

/**/
/* High–Pass filter: in_data contains 8 pointers which point to */
/* input lines. The filters are placed vertically and input data */
/* is read from 8 separate lines. Qr is round value for Q15 */
/* math. M is number of filter taps and is assumed to be 8. */
/* High–Pass filter output is in out_hdata. */
/**/

Compression/Decompression

 5-20

 for (i = 0; i < cols; i++)

 {

 sum_h = Qr;

 filt_ptr = mqmf + M – 1;

 for (j = 0; j < M; j++)

 {

 xdata = in_data[j][i];

 hdata = *filt_ptr––;

 prod_h = xdata * hdata;

 sum_h += prod_h;

 }

 *out_hdata++ = (sum_h >> Qpt);

 }

}

Special Requirements

� Since the wavelet transform is dyadic cols should be a multiple
of 2. No checking is done in the code to ensure this.

� The input filters qmf and mqmf are assumed to be word-aligned
and have 8 taps.

� The input data on any line is assumed to be word-aligned.

� The code can be used to obtain maximum performance by using
a working buffer of ten input lines to effectively mix processing and
data transfer through DMA’s. On every even iteration, the first
eight lines are used as input for processing while the last two lines
are filled up using DMA. On every odd iteration, {line2, ..line10}
are used for processing while the next two input lines are brought
in on line0 and line 1. The input data on the next iteration starts
reading lines from {line4, 0.line10, line0, line1}. This pattern then
repeats.

� The output pointers need to be set as follows on the following calls
to the code:

Call Number out_ldata out_hdata

1 out_lstart out_hstart

2 out_lstart + cols out_hstart + cols

3 out_lstart + 2 * cols out_hstart + 2 * cols

4 out_data out_hstart + 3 * cols

Compression/Decompression

5-21IMGLIB Reference

where

out_lstart � out_data � ((rows �� 1) � 3) * cols,
out_hstart � out_data � (rows �� 1) * cols,

and out_data is the start of the output line.

Notice that on the fourth call to the function out_ldata wraps to
point to the beginning of the output line.

Implementation Notes

� The inner loop that advances along each filter tap is unrolled.
Word-wide data loads are performed and split multiplies are used
to perform two iterations of low-pass filtering in parallel. By load-
ing the filter coefficients in a special fashion, the low-pass filter
kernel is re-used for performing the high-pass filter, thereby sav-
ing code size.

� In order to eliminate bank conflicts, successive lines in the line
buffer are separated by exactly one word so that loads to any
successive lines may be parallelized together.

� Bank Conflicts: No bank conflicts occur.

� Endian: The code is LITTLE ENDIAN.

� Interruptibility: The code is interrupt-tolerant, but not interrupt-
ible.

Benchmarks

Cycles 8 * cols + 48

For cols = 256, cycles = 2096
For cols = 512, cycles = 4144

Code size 736 bytes

Image Analysis

 5-22

5.2 Image Analysis

5.2.1 Boundary Structural Operatorboundary

void boundary(unsigned char *in_data, int rows, int cols, int *XY,
int *out_data)

Arguments

in_data pointer to input image data

rows number of input rows

cols number of input columns

XY pointer to output array of packed XY coordinates

out_data pointer to output gray-value data

Description The routine boundary() assumes that an object in the image occupies
non-zero gray level values and the background has zero value. It re-
turns the coordinates of the non-zero pixels in the image and the asso-
ciated gray level values. The XY coordinates are returned as packed
values. The gray level values are returned in an int array to avoid bank
conflicts.

Algorithm Behavioral C code for the routine boundary() is provided below:

void boundary (unsigned char *in_data, int rows, int
cols, int *XY, int *out_data)

{
/***/
/* rows_n and cols_n maintain current row and column index. The */
/* loop iterates rows*cols times and checks if the pixel at any given */
/* location is non–zero. If it is non–zero the associated gray level is */
/* stored and the coordinates are stored as a packed quantity with */
/* the row in the upper 16–bits and the column in the lower 16 bits. */
/***/
 int i, xword, pixel;
 int rows_n = 0;
 int cols_n = 0;
 int ncols = cols;

Image Analysis

5-23IMGLIB Reference

 for(i = 0; i < (rows*cols); i++)
 {
/**/
/* Prepare the packed coordinate row|col to store if the pixel */
/* that is loaded is non–zero. If it is non–zero store out the */
/* packed coordinates and the gray level. */
/**/

 xword = (rows_n << 16) + cols_n;
 pixel = *in_data++;

if (pixel) *XY++ = xword;
if (pixel) *out_data++ = pixel;

 cols_n++;
 ncols––;
 rows_n +=!ncols;
 if (!ncols) cols_n = 0;
 if (!ncols) ncols = cols;
 }
}

Special Requirements

� ‘cols’ is assumed to be a multiple of 4.

� ‘XY’ and ‘out_data’ arrays are separated by two banks and are
word aligned.

Implementation Notes

� In the optimized assembly code, two loops are collapsed into one
single loop and use is made of an independent down-counting
counter to count to zero. This avoids a costly compare against a
constant. The loop is unrolled four times. A check for zero is per-
formed after every fourth iteration of the original loop as it is as-
sumed that ‘cols’ is a multiple of four.

� Bank Conflicts: No bank conflicts occur in this function.

� Endian: The code is LITTLE ENDIAN.

� Interruptibility: The code is interrupt-tolerant but not interrupt-
ible.

Benchmarks

Cycles 1.25 * (cols * rows) + 4

For cols = 128, rows = 3, cycles = 484
For cols = 720, rows = 8, cycles = 7204

Code size 352 bytes

Image Analysis

 5-24

5.2.2 3x3 Binary Dilationdilate_bin

void dilate_bin(unsigned char *in_data, unsigned char *out_data,
char *mask, int cols)

Arguments

in_data pointer to input image array

out_data pointer to output image array

mask 3x3 binary mask

cols number of image columns processed in bytes

Description The routine dilate_bin() implements 3x3 binary dilation. The input
image consists of binary valued pixels (0s or 1s) packed 32 to a word,
with the function processing 32 pixels per iteration.

Algorithm The routine dilate_bin() computes output for a target pixel as follows:

A 3x3 mask of binary values is used:
mask[3x3]: m00 m01 m02

m10 m11 m12
m20 m21 m22

If input image pixels (binary values) are:
pix[3x3]: p00 p01 p02

p10 p11 p12
p20 p21 p22

The output corresponding to pixel p11 is:
o11 = (m00 OR p00) OR (m01 OR p01) OR

(m02 OR p02) OR
(m10 OR p10) OR (m11 OR p11) OR
(m12 OR p12) OR
(m20 OR p02) OR (m21 OR p21) OR (m22 OR p22)

The default mask values are all 0s, which leads to the following output
conditions:
o11 = 0 if p00 = p01 = p02 = p10 = p11 = p12 = p20

= p21 = p22 = 0
o11 = 1 for all other cases.

The mask can also accommodate “don’t care” values, implemented
as –1. To avoid use of predication for “don’t care” cases, all the mask
elements are first subjected to XOR with –1, and the resulting mask
elements are ANDed with the binary pixel values to achieve the binary
dilation operation.

Image Analysis

5-25IMGLIB Reference

Special Requirements

� Legal values for mask elements are 0 or ”don’t care” (implement-
ed as value –1). Result of ”don’t care” operation on a pixel is al-
ways 0.

� The input binary image needs to have a multiple of 32 pixels (bits)
per row.

Implementation Notes

� Code size for the optimized assembly code has been reduced by
removing the epilog, as well as collapsing the prolog and merging
with the setup code.

� Bank Conflicts: No bank conflicts occur in this function.

� Endian: The code is LITTLE ENDIAN.

� Interruptibility: The code is interrupt tolerant but not interrupt-
ible.

Benchmarks

Cycles [(cols/4) * 6] + 34

For cols = 128*8, cycles = 226
For cols = 720*8, cycles = 1114

Code size 480 bytes

5.2.3 3x3 Binary Erosionerode_bin

void erode_bin(unsigned char *in_data, unsigned char *out_data,
char *mask, int cols)

Arguments

in_data pointer to input image array

out_data pointer to output image array

mask 3x3 binary mask

cols number of image columns processed in bytes

Description The routine erode_bin() implements 3x3 binary erosion. The input
image consists of binary valued pixels (0s or 1s) packed 32 to a word
with the function processing 32 pixels per iteration.

Image Analysis

 5-26

Algorithm The routine erode_bin() computes output for a target pixel as follows:

A 3x3 mask of binary values is used:

mask[3x3]: m00 m01 m02
m10 m11 m12
m20 m21 m22

If input image pixels (binary values) are:

pix[3x3]: p00 p01 p02
p10 p11 p12
p20 p21 p22

The output corresponding to pixel p11 is:

o11 = (m00 AND p00) AND (m01 AND p01) AND
(m02 AND p02) AND
(m10 AND p10) AND (m11 AND p11) AND
(m12 AND p12) AND
(m20 AND p02) AND (m21 AND p21) AND
(m22 AND p22)

The default mask values are all 1s, which leads to the following output
conditions:

o11 = 1 if p00 = p01 = p02 = p10 = p11 = p12 = p20
= p21 = p22 = 1

o11 = 0 for all other cases.

The mask can also accommodate “don’t care” values, implemented
as –1. To avoid use of predication for “don’t care” cases, all the mask
elements are first shifted right by 1, and the resulting mask elements
are ORed with the binary pixel values to achieve the binary erosion
operation.

Special Requirements

� Legal values for mask elements are 1 or ”don’t care” (implement-
ed as value –1). Result of ”don’t care” operation on a pixel is al-
ways 1.

� The input binary image needs to have a multiple of 32 pixels (bits)
per row.

Image Analysis

5-27IMGLIB Reference

Implementation Notes

� Code size for the optimized assembly code has been reduced by
removing the epilog, as well as collapsing the prolog and merging
with the setup code.

� Bank Conflicts : No bank conflicts occur in this function.

� Endian : The code is LITTLE ENDIAN.

� Interruptibility : The code is interrupt tolerant but not interrupt-
ible.

Benchmarks

Cycles [(cols/4) * 6] + 34

For cols = 128*8, cycles = 226
For cols = 720*8, cycles = 1114

Code size 480 bytes

5.2.4 Histogram Computationhistogram

void histogram (unsigned char *in_data, int n, int accumulate,
unsigned short *t_hist, unsigned short *hist)

Arguments

in_data pointer to input image data

n number of points

accumulate defines add/sub from existing histogram:

has values 1, –1

t_hist pointer to temporary histogram bins (1024)

hist pointer to running histogram bins (256)

Description The routine histogram() computes the histogram of an array of n, 8-bit
inputs. It returns the histogram of 256 bins at 16-bit precision. It can
either add or subtract to an existing histogram, using the “accumulate”
control. It requires temporary storage for 4 temporary histograms,
which are later summed together.

Image Analysis

 5-28

Algorithm Behavioral C code for the function histogram() is provided below:
void histogram (unsigned char *in_data, int n, int
accumulate, unsigned short *t_hist,
unsigned short * hist)
{
 int pixel, j;
 for (j = 0; j < n; j++)
 {
 pixel = (int) in_data[j];
 hist[data] += accumulate;
 }
}

Special Requirements

� It is assumed that the temporary array of data, t_hist, is initialized
to zero.

� The input array of data, in_data, must be aligned to a 4-byte
boundary and n must be a multiple of 8.

� The maximum number of pixels that can be profiled in each bin
is 65535 in the main histogram, and the maximum n is 262143.

Implementation Notes

� This code operates on four interleaved histogram bins. The loop
is divided into two halves. The even half operates on even words
full of pixels and the odd half operates on odd words. Both halves
operate on the same 4 histogram bins. This introduces a memory
dependency which ordinarily would degrade performance. To
break the memory dependencies, the two halves forward their re-
sults to each other. Exact memory access ordering obviates the
need to predicate stores.

� The algorithm is ordered as follows:

1) Load from histogram for even half.

2) Store odd_bin to histogram for odd half (previous iteration).

3) If data_even = previous data_odd, increment even_bin by 2,
else increment even_bin by 1, forward to odd.

4) Load from histogram for odd half (current iteration).

5) Store even_bin to histogram for even half.

6) If data_odd = previous data_even increment odd_bin by 2
else increment odd_bin by 1, forward to even.

7) Goto 1.

Image Analysis

5-29IMGLIB Reference

� With the ordering used, forwarding is necessary between even/
odd halves when pixels in adjacent halves need to be placed in
the same bin. The store is never predicated and occurs specula-
tively as it will be overwritten by the next value containing the extra
forwarded value.

� The four histograms are interleaved with each bin spaced four
half-words apart and each histogram starting in a different
memory bank. This allows the four histogram accesses to pro-
ceed in any order without worrying about bank conflicts. The dia-
gram below illustrates this (addresses are half-word offsets):

0 1 2 3 4 5 …

hst0 hst1 hst2 hst3 hst0 hst1 …

bin0 bin0 bin0 bin0 bin1 bin1 …

hst0,…,hst3 are the four histograms and bin0, bin1,… are the bins
used.

� Bank Conflicts: No bank conflicts occur in this function.

� Endian: The code is LITTLE ENDIAN.

� Interruptibility: The code is interrupt-tolerant, but not interrupt-
ible.

Benchmarks

Cycles 9/8 * n + 582

For n = 512, cycles = 1158
For n = 1024, cycles = 1734

Code size 960 bytes

Image Analysis

 5-30

5.2.5 Perimeter Structural Operatorperimeter

void perimeter (unsigned char *in_data, int cols,
unsigned char *out_data)

Arguments

in_data pointer to input binary image data

cols number of input columns

out_data pointer to output boundary image data

Description The routine perimeter() produces the boundary of an object in a binary
image. It echoes the boundary pixels with a value of 0xFF and sets the
other pixels to 0x00. Detection of the boundary of an object in a binary
image is a segmentation problem and is done by examining spatial
locality of the neighboring pixels. This is done by using the four con-
nectivity algorithm:

pix_up

pix_lft pix_cent pix_rgt

pix_dn

The output pixel at location ‘pix_cent’ is echoed as a boundary pixel
if ‘pix_cent’ is non-zero and any one of its four neighbors is zero. The
four neighbors are as shown above and stand for the following:

pix_up: top pixel
pix_lft: left pixel
pix_rgt: right pixel
pix_dn: bottom pixel

Algorithm Behavioral C code for the routine perimeter() is provided below:

void perimeter (unsigned char *in_data, int cols, unsigned char *out_data)

{

 int icols, count = 0;

 unsigned char pix_lft, pix_rgt, pix_top;

 unsigned char pix_bot, pix_cent;

/***/

/* For every pixel along a given line, examine left, right, top and */

/* bottom neighbors. Check whether center pixel is non–zero and */

/* any of the neighbors is zero. The variables are named as: */

/* pix_lft: left pixel, pix_cent: center pixel, pix_rgt: right pixel, */

/* pix_top: top pixel, pix_bot: bottom pixel */

/***/

Image Analysis

5-31IMGLIB Reference

 for(icols = 1; icols < (cols–1); icols++)

 {

 pix_lft = in_data[icols – 1];

 pix_cent = in_data[icols + 0];

 pix_rgt = in_data[icols + 1];

 pix_top = in_data[icols – cols];

 pix_bot = in_data[icols + cols];

 if (((pix_lft==0)||(pix_rgt==0)||(pix_top==0)||(pix_bot==0))
 && (pix_cent > 0))

 {

 out_data[icols] = pix_cent;

 count++;

 }

 else

 {

 out_data[icols] = 0;

 }

 }

 return(count);

}

Special Requirements

� No specific alignment is expected for the input or output array.

� ‘cols’ can be either even or odd.

� This code expects three input lines each of width ‘cols’ pixels and
produces one output line of width (cols – 1) pixels.

Implementation Notes

� To decide whether the given pixel at ‘pix_cent’ is a boundary pixel
or not, 5 pixels have to be examined. This leads to a highly condi-
tional code. The conditional code is reduced by performing multi-
plies to examine whether the four neighboring pixels are zero or
not. Conditionally replacing the value of the output pixel based on
status flag also helps scheduling. Notice also that the ‘pix_cent’
variable lives too long in the kernel. This is because its value is not
consumed for a long time after it is produced. This can hinder the
start of the next iteration. This is avoided by issuing moves and
making copies of this variable.

� Bank Conflicts: No bank conflicts occur in this function.

Image Analysis

 5-32

� Endian: This code is ENDIAN NEUTRAL.

� Interruptibility: The code is interrupt-tolerant but not interrupt-
ible.

Benchmarks

Cycles 3 * (cols – 2) + 14

For cols = 128, cycles = 392
For cols = 720, cycles = 2168

Code size 358 bytes

5.2.6 Sobel Edge Detectionsobel

void sobel(const unsigned char *in_data, unsigned char *out_data,
short cols, short rows)

Arguments

in_data pointer to input image data

out_data pointer to output image data

cols number of columns in the input image

rows number of rows in the input image

Description The routine sobel() applies horizontal and vertical Sobel edge detec-
tion masks to the input image to an output image which is two rows
shorter than the input image. Within each row of the output, pixels 1
through cols–2 contain filtered outputs. Pixels 0 and cols–1 will not
contain meaningful results.

Algorithm The Sobel edge-detection masks shown below are applied to the in-
put image separately. The absolute values of the mask results are
then added together. If the resulting value is larger than 255, it is
clamped to 255. The result is then written to the output image.

Horizontal Mask Vertical Mask

–1 –2 –1 –1 0 1

0 0 0 –2 0 2

1 2 1 –1 0 1

Image Analysis

5-33IMGLIB Reference

Special Requirements

� At least eight output pixels must be processed.

� The image arrays must be half-word aligned.

� The input image width (value of ‘cols’) must be even.

Implementation Notes

� The values of the left-most and right-most pixels on each line of
the output are not well defined.

� Bank Conflicts: No bank conflicts occur.

� Endian : The code is LITTLE ENDIAN.

� Interruptibility: The code is interrupt-tolerant, but not interrupt-
ible.

Benchmarks

Cycles 3 * cols * (rows – 2) + 34

For cols = 128, rows = 8, cycles = 2338
For cols = 720, rows = 8, cycles = 12,994

Code size 608 bytes

5.2.7 Image Thresholdingthreshold

void threshold(const unsigned char *in_data,
unsigned char *out_data, short cols, short rows,
unsigned char threshold)

Arguments

in_data pointer to input image data

out_data pointer to output image data

cols number of image columns

rows number of image rows

threshold threshold value

Description The routine threshold() performs a thresholding operation on an input
image in in_data[] whose dimensions are given by the arguments
’cols’ and ’rows’. The thresholded pixels are written to the output

Image Analysis

 5-34

image pointed to by out_data[]. The input and output are exactly the
same dimensions.

Pixels that are above the threshold value are written to the output un-
modified. Pixels that are less than or equal to the threshold are
clamped to zero in the output image.

Algorithm Behavioral C code for the routine threshold() is provided below:

void threshold (const unsigned char *in_data, unsigned char *out_data, short cols,
short rows, unsigned char threshold)

{
 int i;
/***/
/* Step through input image copying pixels to the output. If the */
/* pixel value is below threshold, set corresponding output to zero. */
/***/

 for (i = 0; i < rows * cols; i++)
 out_data[i] = in_data[i] <= threshold ? 0 : in_data[i];
}

Special Requirements

� Both buffers (input and output) must be word aligned.

� A multiple of 16 pixels must be processed.

� Stack is aligned to a word boundary.

� The code requires 12 words of stack space to save Save-On-
Entry registers.

Implementation Notes

� The two loops that were originally in the natural C code have been
collapsed into one.

� For performance, the code outside the loop has been interleaved
as much as possible with the prolog and epilog code.

� Twin stack-pointers are used to accelerate stack accesses.

� The inner loop is unrolled 16 times and the data is manipulated
in packed format for speed.

� Bank Conflicts: No bank conflicts occur in this function.

� Endian: This code is LITTLE ENDIAN.

Image Analysis

5-35IMGLIB Reference

� Interruptibility: The code is interrupt-tolerant but not interrupt-
ible.

Benchmarks

Cycles (cols * rows / 16) * 9 + 50

For cols = 128, rows = 8, cycles = 626
For cols = 720, rows = 8, cycles = 3290

Code size 576 bytes

Picture Filtering/Format Conversions

 5-36

5.3 Picture Filtering/Format Conversions

5.3.1 3x3 Correlation with Roundingcorr_3x3

void corr_3x3(const unsigned char *in_data,
unsigned char *out_data, int rows, int cols, unsigned char *mask,
short roundval)

Arguments

in_data pointer to an input array of 8-bit pixels

out_data pointer to an output array of 8-bit pixels

rows line number of current output row to be computed

cols number of columns in the image

mask pointer to 8-bit mask

roundval user specified round value

Description The routine corr_3x3() performs a point by point multiplication of the
3x3 mask with the input image. The result of the nine multiplications
are then summed together. The sum is rounded and shifted to pro-
duce an 8-bit value which is stored in an output array. The image mask
to be correlated is typically part of the input image or another image.
The mask is moved one column at a time, advancing the mask until
the entire row is covered.

In an application the correlation kernel is called once for every row as
shown below:

void corr3x3 (unsigned char *in_data, int cols,
int rows, short *mask, unsigned char *out_data)
{

int i;

for (i = 0; i < (rows –2); i++)
{

corr_3x3 (in_data, out_data, i, cols,
mask, round);

}
}

Picture Filtering/Format Conversions

5-37IMGLIB Reference

Algorithm Behavioral C code for the function corr_3x3() is provided below:

void corr_3x3 (const unsigned char *in_data, unsigned char *out_data,
int rows, int cols, unsigned char *mask, short round)
{

 int i,j;

 int sum00,sum11,sum22;

 int sum = 0;

 const unsigned char *IN1,*IN2,*IN3;

 unsigned char pix10,pix20,pix30;

 short mask10,mask20,mask30;

 unsigned char *OUT;

 unsigned char shift = 12;

 IN1 = in_data + (rows*cols); /* pointer to 1st row */

 IN2 = IN1 + cols; /* pointer to 2nd row */

 IN3 = IN2 + cols; /* pointer to 3rd row */

 OUT = out_data + ((rows+1)*cols) + 1; /* output pointer */

 for (j = 0; j < (cols–2); j++)

 {

 sum = 0; /* initialize correlation to zero */

 for (i = 0; i < 3; i++)

 {

 pix10 = IN1[i]; /* load 1st row pixel value */

 pix20 = IN2[i]; /* load 2nd row pixel value */

 pix30 = IN3[i]; /* load 3rd row pixel value */

 mask10 = mask[i]; /*load 1st row mask value */

 mask20 = mask[i+3]; /* load 2nd row mask value */

 mask30 = mask[i+6]; /* load 3rd row mask value */

 sum00 = pix10 * mask10;

 sum11 = pix20 * mask20;

 sum22 = pix30 * mask30;

 sum += sum00+sum11+sum22;

 }

 IN1++; /* increment row 1 pointer */

 IN2++; /* increment row 2 pointer */

 IN3++; /* increment row 3 pointer */

 sum = (sum+round)>>shift; /* round and shift final sum */

 OUT++ = sum; / store out the result */

 }

}

Picture Filtering/Format Conversions

 5-38

Special Requirements

� The array pointed to by out_data should not alias with the array
pointed to by in_data.

� This function only performs 3x3 correlation. A more generalized
function for correlation with an arbitrary sized mask is also avail-
able as a separate kernel in the benchmark suite.

� The argument ‘row’ should be a multiple of two, as two output pix-
els are processed together in the optimized assembly code.

� (column – 2) output pixels are produced when three lines, each
with a width of ‘column’ pixels, are given as input.

Implementation Notes

� Data for the input image pixels is reused by pre-loading it outside
the loop and issuing moves to bring it to the appropriate registers
once inside the loop. This is done to minimize the loads from nine
to six within the loop, for each pair of pixels in the present com-
putation of the correlation.

� The loop is unrolled once so that eighteen multiplies for the two
output pixels can schedule in 9 cycles leading to 4.5 cycles per
output pixel.

� The loop that did the loads three at a time, per row is collapsed
to increase parallel operations.

� Bank Conflicts : No bank conflicts occur in this function.

� Endian : The code is ENDIAN NEUTRAL.

� Interruptibility : The code is interrupt-tolerant, but not interrupt-
ible.

Benchmarks

Cycles [(cols – 2) * 4.5) + 21]

For cols = 256, cycles = 1164
For cols = 720, cycles = 3252

Code size 1120 bytes

Picture Filtering/Format Conversions

5-39IMGLIB Reference

5.3.2 Generalized Correlationcorr_gen

void corr_gen(short *in_data, short *h, short *out_data, int m, int cols)

Arguments

in_data pointer to input pixel array

h pointer to input 1xM mask array

out_data pointer to output array

m number of filter taps

cols number of columns in the image

Description The routine corr_gen() performs a generalized correlation with a 1xM
tap filter. It can be called repetitively to form an arbitrary MxN 2-D gen-
eralized correlation function. The correlation sums are stored as half
words. The input pixel, and mask data are assumed to be shorts. No
restrictions are placed on number of columns in the image (cols) or the
number of filter taps (m).

Algorithm Behavioral C code for the routine corr_gen() is provided below:

void corr_gen (short *in_data, short *h, short *out_data, int m, int cols)
{

/**/
/* For all columns compute an M–tap filter. Add */
/* correlation sum to value, to allow for a generalized 2–D */
/* correlation to be built using several 1–D correlations */
/**/

int i, j;

for (j = 0; j < cols; j++)
{

sum = out_data[j];

for (i = 0; i < m; i++)
{

sum += in_data[i + j] * h[i];
}

out_data[j] = sum;
}

}

Picture Filtering/Format Conversions

 5-40

Special Requirements

� Data for input image, filter and output arrays must be word-
aligned.

� If the width of the input image is ‘cols’ and the mask is ‘m’ then the
output array must have at least a dimension of (cols – m + 4)

� Unrolling of the outer loop assumes that there are an even num-
ber of filter taps (m). Two special cases arise:

� m = 1. In this case a separate version that processes just 1 tap
needs to be used and the code should directly start from this
loop without executing the version of the code for even num-
ber of taps.

� m is odd. In this case the even version of the loop is used for
as many even taps as possible and then the last tap is com-
puted using the odd tap special version created for m = 1.

� The inner loop is unrolled four times, assuming that the loop itera-
tion (cols – m) is a multiple of four. In most typical images ‘cols’
is a multiple of 8 but since ‘m’ is completely general (cols – m) may
not be a multiple of 4. If (cols – m) is not a multiple of 4 then the
inner loop iterates fewer times than required and certain output
pixels may not be computed. This problem is overcome as fol-
lows:

Increment (cols – m) by 4 so that the next higher multiple of 4 is
computed. This implies that in certain cases up to four extra pixels
may be computed if (cols – m) is an exact multiple of 4. In other
cases, 1, 2 or 3 extra pixels may be computed. In order to annul
this extra computation, four locations starting at x[cols–m] are
zeroed out before returning to the calling function.

Implementation Notes

� Since this function performs generalized correlation, the number
of filter taps can be as small as one. Hence, it is not beneficial to
pipeline this loop. In addition, collapsing of the loops causes data
dependencies and degrades the performance. However, loop or-
der interchange can be used effectively. In this case the outer loop
of the natural C code is exchanged to be the inner loop that is to
be software pipelined, in the optimized assembly code. It is bene-
ficial to pipeline this loop because typical image dimensions are
larger than the number of filter taps. Note however that the num-
ber of data loads and stores do increase within this loop compared
to the natural C code.

Picture Filtering/Format Conversions

5-41IMGLIB Reference

� The optimized assembly code tries to balance the computing with
the data loads/stores that have to be performed because of the
loop order interchange. In order to do this word-wide loads are
used. The outer loop that computes one filter tap at a time is un-
rolled and computes two filter taps at a time. In order to decrease
the number of loads the first word is pre-loaded outside the j loop
and data is re-used within the j loop. The updating of the present
correlation sum with the previous correlation sum is done using
the add2 instruction. To get better multiplier utilization the inner
loop is unrolled four times and four outputs are computed togeth-
er.

� Bank Conflicts: No bank conflicts occur in this function.

� Endian : The code is ENDIAN NEUTRAL.

� Interruptibility : The code is interrupt-tolerant, but not interrupt-
ible.

Benchmarks

Cycles (case 1 – even
number of filter taps)

m*[15 + (cols – m)/2]

For m = 8, cols = 720, cycles = 2968

Cycles (case 2 – odd
number of filter taps)

k*[15 + (cols – k)/2] + 10 + cols*3/4

k = m–1

For m = 9, cols = 720, cycles = 3518

Code size 768 bytes

5.3.3 Error Diffusion, Binary Outputerrdif_bin

void errdif_bin(unsigned char errdif_data[], int cols, int rows,
short err_buf[], unsigned char thresh)

Arguments

errdif_data pointer to input/output image data

cols number of columns in the image

rows number of rows in the image

err_buf buffer where one row of error values is saved

thresh threshold value in the range [0x00, 0xFF]

Description The errdif_bin() routine implements the Floyd-Steinberg error diffu-
sion filter with binary output.

Picture Filtering/Format Conversions

 5-42

Pixels are processed from left-to-right, top-to-bottom in an image.
Each pixel is compared against a user-defined threshold. Pixels that
are larger than the threshold are set to 255, and pixels that are smaller
or equal to the threshold are set to 0. The error value for the pixel (e.g.
the difference between the thresholded pixel and its original gray lev-
el) is propagated to the neighboring pixels using the Floyd Steinberg
filter (see below). This error propogation diffuses the error over a larg-
er area, hence the term “error diffusion.”

The Floyd Steinberg filter propagates fractions of the error value at
pixel location X to four of its neighboring pixels. The fractional values
used are:

X 7/16

3/16 5/16 1/16

Algorithm When a given pixel at location (x, y) is processed, it has already re-
ceived error terms from four neighboring pixels. Threes of these pixels
are on the previous row at locations (x–1, y–1), (x, y–1), and (x+1,
y+1), and one is immediately to the left of the current pixel at (x–1, y).
In order to reduce the loop-carry path that results from propagating
these errors, this implementation uses an error buffer to accumulate
errors that are being propagated from the previous row. The result is
an inverted filter, as shown below:

1/16 5/16 3/16

7/16 Y

where Y is the current pixel location and the numerical values repre-
sent fractional contributions of the error values from the locations indi-
cated that are diffused into the pixel at location Y location.

This modified operation requires the first row of pixels to be processed
separately, since this row has no error inputs from the previous row.
The previous row’s error contributions in this case are essentially
zero. One way to achieve this is with a special loop that avoids the ex-
tra calculation involved with injecting the previous row’s errors. Anoth-
er is to pre-zero the error buffer before processing the first row. This
function supports the latter approach.

Picture Filtering/Format Conversions

5-43IMGLIB Reference

Behavioral C code for the routine errdif_bin() is provided below:

void errdif_bin (unsigned char errdif_data[], int cols, int rows,
short err_buf[], unsigned char thresh)
{
 int x, i, y, F;
 int errA, errB, errC, errE, errF;

 for(y = 0, i = 0; y < h; y++)
 {
/***/
/* Start with initial errors set to zero at the start of */
/* the line since we do not have any pixels to the left */
/* of the row. These error terms are maintained within */
/* the inner loop. */
/***/

errA = 0; errE = 0;
errB = err_buf[0];

for(x = 0; x < w; x++, i++)
{

errC = err_buf[x+1];
F = errdif_data[i];

 /**/
 /* Calculate the resulting pixel. If we assume */
 /* this pixel will be set to zero, it also doubles */
 /* as the error term. */
 /**/

errF = F + ((errE*7 + errA + errB*5 + errC*3) >> 4);

 /**/
 /* Set pixels that are larger than the threshold */
 /* to 255, and pixels that are smaller than or */
 /* equal to the threshold to 0 */
 /**/

if (errF > thresh) errdif_data[i] = 0xFF;
else errdif_data[i] = 0;

 /**/
 /* If the pixel was larger than the threshold */
 /* then subtract 255 from the error. Store error */
 /* to the error buffer. */
 /**/

Picture Filtering/Format Conversions

 5-44

if (errF > thresh) err_buf[x] = errF = errF – 0xFF;
else err_buf[x] = errF;

 /**/
 /* Propagate error terms for the next pixel. */
 /**/

errE = errF;
errA = errB;
errB = errC;

}
 }
}

Special Requirements

� The number of columns must be at least 4.

� err_buf[] must be initialized to zeros for the first call and the re-
turned err_buf should be provided for the next call.

� errdif_data[] is used for both input and output.

� The size of err_buf should be (cols+1)*Half-Word.

Implementation Notes

� The outer loop has been interleaved with the prolog and epilog of
the inner loop.

� Constants 7, 5, 3, 1 for filter-tap multiplications are shifted left 12
to avoid SHR 4 operation in the critical path.

� The inner loop is software-pipelined.

� Twin stack pointers have been used to speed up stack accesses.

� No special alignment of data arrays is expected.

� Bank Conflicts : No bank conflicts occur.

� Endian : The code is ENDIAN NEUTRAL.

� Interruptibility : The code is interrupt tolerant, but not interrupt-
ible.

Benchmarks

Cycles [(cols * 4) + 14] * rows + 21

For cols = 720, rows = 8, cycles = 23,173

Code size 480 bytes

Picture Filtering/Format Conversions

5-45IMGLIB Reference

5.3.4 3x3 Median Filtermedian_3x3

void median_3x3(unsigned char *in_data, int cols,
unsigned char *out_data)

Arguments

in_data pointer to input image array

cols number of columns in image

out_data pointer to output image array

Description The routine median_3x3() performs a 3x3 median filtering algorithm.
The gray level at each pixel is replaced by the median of the nine
neighborhood values. The median of a set of nine numbers is the
middle element so that half of the elements in the list are larger and
half are smaller. Median filter removes the effect of extreme values
from data. It is a commonly used operation for reducing impulsive
noise in images.

Algorithm The algorithm processes a 3x3 region as three 3-element columns,
incrementing through the columns in the image. Each column of data
is first sorted into MAX, MED, and MIN values, resulting in the follow-
ing arrangement:

I00, I01, I02 MAX
I10, I11, I12 MED
I20, I21, I22 MIN

Where I00 is the MAX of the first column, I10 is the MED of the first
column, I20 is the MIN of the first column and so on.

The three MAX values I00, I01, I02 are then compared and their MIN
value is retained, call it MIN0.

The three MED values I10, I11, I12 are compared and their MED value
is retained, call it MED1.

The three MIN values I20, I21, I22 are compared and their MIN value
is retained, call it MIN2.

The three values MIN0, MED1, MIN2 are then sorted and their median
is the median value for the nine original elements.

Picture Filtering/Format Conversions

 5-46

After this output is produced, a new set of column data is read in, say
I03, I13, I23. This data is sorted as a column and processed along with
I01, I11, I21, and I02, I12, I22 as explained above. Since these two
sets of data are already sorted, they can be re-used as is.

Special Requirements There are no special requirements for this routine.

Implementation Notes

� Bank Conflicts: No bank conflicts occur.

� Endian: The code is LITTLE ENDIAN.

� Interruptibility: The code is interrupt-tolerant, but not interrupt-
ible.

Benchmarks

Cycles 9 * cols + 55

For cols = 128, cycles = 1207
For cols = 720, cycles = 6535

Code size 544 bytes

5.3.5 Pixel Expandpix_expand

void pix_expand(int n, unsigned char *in_data, short *out_data)

Arguments

n number of samples processed

in_data pointer to input array (unsigned chars)

out_data pointer to output array (shorts)

Description The routine pix_expand() takes an array of unsigned chars (pixels)
and zero extends them upto 16-bits to form shorts.

Algorithm Behavioral C code for the routine pix_expand() is provided below:

void pix_expand (int n, unsigned char *in_data,
short *out_data)
{

int j;
for (j = 0; j < n; j++)

out_data[j] = (short) in_data[j];
}

Picture Filtering/Format Conversions

5-47IMGLIB Reference

Special Requirements

� nput and Output arrays must be aligned on at least 4 byte bound-
aries.

� Input data is unsigned 8-bit format and must be a multiple of 8 ele-
ments and be at least 8 elements long.

Implementation Notes

� The optimized assembly code is unrolled 8 times, with 2 LDWs
reading in a total of 8 bytes per iteration. The bytes are extracted
into registers, and are then re-packed as shorts. The packed
shorts are then written out using four STWs.

� The packing is achieved using MPYU and ADD. First, the data is
shifted left by 15 with the MPYU by multiplying with (1 << 15). The
value is then added to itself to shift it left one more bit. A final ADD
merges the shifted quantity with a second quantity, giving the
packed result.

� Bank Conflicts: No bank conflicts occur.

� Endian: The code is LITTLE ENDIAN.

� Interruptibility: The code is interrupt-tolerant, but not interrupt-
ible.

Benchmarks

Cycles 0.5 * n + 26

For n = 256, cycles = 154
For n = 1024, cycles = 538

Code size 288 bytes

5.3.6 Pixel Saturatepix_sat

void pix_sat(int n, short *in_data, unsigned char *out_data)

Arguments

n number of samples processed

in_data pointer to input array (shorts)

out_data pointer to output array (unsigned chars)

Picture Filtering/Format Conversions

 5-48

Description The routine pix_sat() performs the saturation of 16-bit signed num-
bers to 8-bit unsigned numbers. If the data is over 255 it is saturated
to 255, if it is less than 0 it is saturated to 0.

Algorithm Behavioral C code for the routine pix_sat() is provided below:

void pix_sat(int n, short *in_data,
unsigned char *out_data)
{

int j, pixel, pel;
for (j = 0; j < n; j++)
{

 pixel = in_data[j];
 pel = (unsigned char) pixel;
 if (pixel > 0xff) pel = 0xff;
 if (pixel < 0x00) pel = 0x00;
 out_data[j] = pel;

}
}

Special Requirements The input array must be aligned on an 8 bytes boundary and be a mul-
tiple of 8 in length, n % 8 = 0.

Implementation Notes

� The data is loaded in pairs of shorts, the sign bits are detected and
the test is done to see if values are over 8 bits. Outputs are packed
back together to form words.

� Bank Conflicts: No bank conflicts occur.

� Endian: The code is LITTLE ENDIAN.

� Interruptibility: The code is interrupt-tolerant, but not interrupt-
ible.

Benchmarks

Cycles n + 37

For n = 256, cycles = 293
For n = 1024, cycles = 1061

Code size 448 bytes

Picture Filtering/Format Conversions

5-49IMGLIB Reference

5.3.7 Horizontal Scalingscale_horz

void scale_horz(unsigned short *in_data, unsigned int n_x, short
*out_data, unsigned int n_y, short *hh, unsigned int l_hh,
unsigned int n_hh, short * patch)

Arguments

in_data pointer to 16-bit input data

n_x pixels per line in input (un-scaled) data

out_data pointer to 16-bit output data

n_y pixels per line in output (scaled) data

hh pointer to filter coefficients

l_hh length of each scaling filter (number of filter taps)

n_hh number of scaling sub-filters

patch pointer to decrement pattern

Description The routine scale_horz() performs a resizing function on a horizontal
line of image data, using a polyphase FIR filter approach. Scale fac-
tors are indicated as m:n where m input samples correspond to n out-
put samples. The code is flexible (within certain restrictions explained
below) in terms of scale factors possible as well as number of filter
taps.

Algorithm Behavioral C code for the function histogram() is provided below:

void scale_horz (short *in_data, int n_x,
short *out_data, int n_y, short *hh, int l_hh,
int n_hh, short * patch)
{
 int filter_count;
 int i,j,k,ka;
 int jump;
 int y0;
 short h0;
 short *ptr_hh;
 short x00;
 short *line0_x, *line0_y;
 short *patch0;

Picture Filtering/Format Conversions

 5-50

patch0 = patch + 1;

filter_count = n_hh;

ka = 0;

line0_x = in_data;

line0_y = out_data;

ptr_hh = hh;

for (i = 0; i < n_y; i++)

{

y0 = 1 << 5;

for (j = 0; j < l_hh; j+=4)

{

jump = (int) (*patch0++);

for (k=0; k < 4; k++)

{

h0 = *ptr_hh++;

x00 = *(line0_x + ka + k);

y0 += (x00 * h0);

}

ka = ka + jump;

}

*line0_y++ = (short) (y0 >> 6) ;

filter_count –= 1;

if (!filter_count)

{

patch0 = patch + 1;

ptr_hh = hh;

filter_count = n_hh;

}

}

}

Special Requirements

� Two lines are scaled simultaneously. Data for each line must be
aligned on a double word boundary and be multiples of 8 bytes.

� Filters must be multiples of 4-taps, maximum number of filters
possible per scale factor is 16.

� Input and output data must be 16-bit signed shorts.

� Filter coefficients must be 16-bit signed shorts.

Picture Filtering/Format Conversions

5-51IMGLIB Reference

� The data is assumed to be in Q6 precision format, 10.6 form.

� The sub-filters must be all of the same length and must be con-
catenated in a single linear array.

Implementation Notes

� Ratio n_y/n_x is the scale factor.

� Bank Conflicts : Different filter lengths can produce different
bank conflicts but almost zero effect.

� Endian: The code is LITTLE ENDIAN.

� Interruptibility : The code is interrupt-tolerant, but not interrupt-
ible.

Benchmarks

Cycles (l_hh * (1+k) * sf * n_x) +15

where k = 1/(4* l_hh) when l_hh%8 = 0, k = 0
otherwise

For l_hh = 8, n_x = 640, sf = 0.1875, cycles = 1005
For l_hh = 16, n_x = 1024, sf = 1.3333, cycles =
22,201

Code size 416 bytes

5.3.8 Vertical Scalingscale_vert

void scale_vert(short *in_data, short *out_data, int cols, short *ptr_hh,
short *mod_hh, int l_hh, int start_line)

Arguments

in_data pointer to 16-bit input data

cols width of the input image in pixels

out_data pointer to 16-bit output data

ptr_hh pointer to filter taps

mod_hh pointer to rotated filter taps

l_hh number of taps in each filter, l_hh % 2 = 0

start_line position in the buffer for the filter to start

Picture Filtering/Format Conversions

 5-52

Description The routine scale_vert() performs a vertical scaling function on a block
of data from a frame store. It uses a scaling filter decided upon by the
calling function. The filter is rotated depending on the starting line of
the circular buffer. One line of length ‘cols’ is produced per function
call. The same filter runs along the entire length of buffer and performs
the filter vertically along each set of parallel data points.

Algorithm Behavioral C code for the routine scale_vert() is provided below:

void scale_vert(short *in_data, short *out_data,
int cols, short *ptr_hh, short *mod_hh, int l_hh,
int start_line)
{
 int i, j, k, y;
 k = 0;
 for (j = start_line; j < l_hh; j++)
 mod_hh[j] = ptr_hh[k++];
 if (start_line)
 {
 for (j = 0; j < start_line; j++)
 mod_hh[j] = ptr_hh[k++];
 }
 for (i = 0; i < cols; i++)
 {
 y = 0;
 for (j = 0; j < l_hh; j++)
 {
 y += (in_data[j*cols+i] *
 mod_hh[j]);
 }
 *out_data++ = (y >> 16);
 }
}

Special Requirements

� l_hh must be divisible by 2, pad with zeros for non % 2

� All data must be double word aligned.

� Input and output array sizes, mod_hh, ptr_hh, cols must be multi-
ples of 8.

� Scaling filter coefficients must be of 12-bit precision.

Picture Filtering/Format Conversions

5-53IMGLIB Reference

Implementation Notes

� Inner and outer loops are collapsed into one loop.

� The inner loop is unrolled twice with l_hh % 2 = 0.

� The output data half stores are packed together into words and
the outer loop is unrolled 4 times to allow 4 parallel filters to be
convolved at once.

� Bank Conflicts: No bank conflicts occur in this function.

� Endian: The code is LITTLE ENDIAN.

� Interruptibility: The code is interrupt-tolerant but not interrupt-
ible.

Benchmarks

Cycles 0.75 * l_hh * cols + 6 * l_hh + 37

For cols = 128, l_hh = 4, cycles = 445
For cols = 720, l_hh = 16, cycles = 8773

Code size 544 bytes

A-1

Appendix A

Performance/
Warranty and Support

This appendix describes performance considerations related to the ’62x
IMGLIB and provides information about warranty, software updates, and
customer support issues.

Topic Page

A.1 Performance Considerations A-2.

A.2 Warranty A-6.

A.3 IMGLIB Software Updates A-6.

A.4 IMGLIB Customer Support A-6.

Appendix A

Performance Considerations

 A-2

A.1 Performance Considerations

Although IMGLIB can be used as a first estimation of processor performance
for a specific function, you should be aware that the generic nature of IMGLIB
might add extra cycles not required for customer specific usage.

Benchmark cycles presented assume best case conditions, typically assum-
ing all code and data are placed in internal data memory. Any extra cycles due
to placement of code or data in external data memory or cache-associated
effects (cache-hits or misses) are not considered when computing the cycle
counts.

You should also be aware that execution speed in a system is dependent on
where the different sections of program and data are located in memory. You
should account for such differences when trying to explain why a routine is tak-
ing more time than the reported IMGLIB benchmarks.

Table A–1 provides a listing of the routines provided in this software package
as well as ’C62x performance data for each:

Table A–1. ’C62x Routines Performance Data

Function Description Cycles Code Size

boundary() Boundary Structural Operator 1.25 * (cols * rows) + 4 cycs

‘cols’ is number of image columns
‘rows’ is number of image rows

For cols = 128, rows = 3, cycs = 484
For cols = 720, rows = 8, cycs = 7204

352 bytes

corr_3x3() 3x3 Correlation with Rounding [(cols – 2) * 4.5) + 21] cycs

‘cols’ is number of image columns

For cols = 256, cycs = 1164
For cols = 720, cycs = 3252

1120 bytes

corr_gen() Generalized Correlation Case 1 – Even number of filter taps

m*[15 + (cols – m)/2] cycs

‘m’ is number of filter taps
‘cols’ is number of image columns

For m = 8, cols = 720, cycs = 2968

768 bytes

Case 2 – Odd number of filter taps

k*[15 + (cols – k)/2] + 10 + cols*3/4 cycs
k = m–1, ‘m’ is number of filter taps

‘cols’ is number of image columns

For m = 9, cols = 720, cycs = 3518

Performance Considerations

A-3Performance/

Table A–1. ’C62x Routines Performance Data (Continued)

Function Code SizeCyclesDescription

dilate_bin() 3x3 Binary Dilation [(cols/4) * 6] + 34 cycs

‘cols’ is number of image cols in bytes

For cols = 128*8, cycs = 226
For cols = 720,*8 cycs = 1114

480 bytes

erode_bin() 3x3 Binary Erosion [(cols/4) * 6] + 34 cycs

‘cols’ is number of image cols in bytes

For cols = 128*8, cycs = 226
For cols = 720*8, cycs = 1114

480 bytes

errdif_bin() Error Diffusion, Binary Output [(cols * 4) + 14] * rows + 21 cycs

‘cols’ is number of image columns
‘rows’ is number of image rows

For cols = 720, rows = 8, cycs = 23,173

480 bytes

fdct_8x8() Forward Discrete Cosine
Transform (FDCT)

160 * num_fdcts + 48 cycs

‘num_fdcts’ is number of fdcts

For num_fdcts = 6, cycs = 1008
For num_fdcts = 24, cycs = 3888

1216 bytes

histogram() Histogram Computation 9/8 * n + 582 cycs

‘n’ is number of points processed

For n = 512, cycs = 1158
For n = 1024, cycs = 1734

960 bytes

idct_8x8() Inverse Discrete Cosine
Transform (IDCT)

168 * num_idcts + 62 cycs

‘num_idcts’ is number of idcts

For num_idcts = 6, cycs = 1070
For num_idcts = 24, cycs = 4094

1344 bytes

mad_8x8() 8x8 Minimum Absolute
Difference

62 * H * V + 21 cycs

‘H’ = columns in search area
‘V’ = rows in search area

For H = 4, V = 4, cycs = 1013
For H = 64, V = 32, cycs = 126,997

768 bytes

Performance Considerations

 A-4

Table A–1. ’C62x Routines Performance Data (Continued)

Function Code SizeCyclesDescription

mad_16x16() 16x16 Minimum Absolute
Difference

231 * H * V + 21 cycs

‘H’ = columns in search area
‘V’ = rows in search area

For H = 4, V = 4, cycs = 3717
For H = 64, V = 32, cycs = 473,109

768 bytes

median_3x3() 3x3 Median Filter 9 * cols + 55 cycs

‘cols’ is number of image columns

For cols = 128, cycs = 1207
For cols = 720, cycs = 6535

544 bytes

perimeter() Perimeter Structural Operator 3 * (cols –2) + 14 cycs

‘cols’ is number of image columns

For cols = 128, cycs = 392
For cols = 720, cycs = 2168

358 bytes

pix_expand() Pixel Expand 0.5 * n + 26 cycs

‘n’ is number of data samples

For n = 256, cycs = 154
For n = 1024, cycs = 538

288 bytes

pix_sat() Pixel Saturate n + 37 cycs

‘n’ is number of data samples

For n = 256, cycs = 293
For n = 1024, cycs = 1061

448 bytes

quantize() Matrix Quantization with
Rounding

(blk_size/16) * (4 + num_blks * 12) + 26
cycs

‘blk_size’ is block size
‘num_blks’ is number of blocks

For blk_size=64, num_blks=8, cycs=426
For blk_size=256, num_blks=24,
cycs=4696

1024 bytes

Performance Considerations

A-5Performance/

Table A–1. ’C62x Routines Performance Data (Continued)

Function Code SizeCyclesDescription

scale_horz() Horizontal Scaling (l_hh*(1+k)*sf*n_x)+15 cycs

where k=1/(4*l_hh) when l_hh%8=0, k=0
otherwise

‘l_hh’ is number of filter taps per output
‘sf’ is scale factor
‘n_x’ is pixels per line in input

For l_hh=8, n_x=640, sf=0.1875,
cycs=1005
For l_hh=16, n_x=1024, sf=1.3333,
cycs=22,201

416 bytes

scale_vert() Vertical Scaling 0.75*l_hh*cols+6*l_hh+37 cycs

‘l_hh’ is number of filter taps per output
‘cols’ is number of image columns

For cols = 128, l_hh = 4, cycs = 445
For cols = 720, l_hh = 16, cycs = 8773

544 bytes

sobel() Sobel Edge Detection 3 * cols * (rows –2) + 34 cycs

‘cols’ is number of image columns
‘rows’ is number of image rows

For cols = 128, rows = 8, cycs = 2338
For cols = 720, rows = 8, cycs = 12,994

608 bytes

threshold() Image Thresholding (cols * rows/16) * 9 + 50 cycs

‘cols’ is number of image columns
‘rows’ is number of image rows

For cols = 128, rows = 8, cycs = 626
For cols = 720, rows = 8, cycs = 3290

576 bytes

wave_horz() Horizontal Wavelet Transform (4 * cols) + 5 cycs

‘cols’ is number of image columns

For cols = 256, cycs = 1029
For cols = 512, cycs = 2058

640 bytes

wave_vert() Vertical Wavelet Transform (8 * cols) + 48 cycs

‘cols’ is number of image columns

For cols = 256, cycs = 2096
For cols = 512, cycs = 4144

736 bytes

Warranty

 A-6

A.2 Warranty

The ’C62x IMGLIB is distributed free of charge.

BETA RELEASE SPECIAL DISCLAIMER: This IMGLIB software release is
preliminary (Beta). It is intended for evaluation only. Testing and characteriza-
tion has not been fully completed. Production release typically follows the Beta
release but there are no explicit guarantees.

A.3 IMGLIB Software Updates

’C62x IMGLIB Software updates may be periodically released incorporating
product enhancements and fixes as they become available. You should read
the README.TXT available in the root directory of every release.

A.4 IMGLIB Customer Support

If you have questions or want to report problems or suggestions regarding the
’C62x IMGLIB, contact Texas Instruments at dsph@ti.com.

Warranty / IMGLIB Software Updates / IMGLIB Customer Support

B-1

Appendix A

Glossary

A

address: The location of program code or data stored; an individually
accessible memory location.

A-law companding: See compress and expand (compand).

API: See application programming interface.

application programming interface (API): Used for proprietary applica-
tion programs to interact with communications software or to conform to
protocols from another vendor’s product.

assembler: A software program that creates a machine language program
from a source file that contains assembly language instructions, direc-
tives, and macros. The assembler substitutes absolute operation codes
for symbolic operation codes and absolute or relocatable addresses for
symbolic addresses.

assert: To make a digital logic device pin active. If the pin is active low, then
a low voltage on the pin asserts it. If the pin is active high, then a high
voltage asserts it.

B

bit: A binary digit, either a 0 or 1.

big endian: An addressing protocol in which bytes are numbered from left
to right within a word. More significant bytes in a word have lower num-
bered addresses. Endian ordering is specific to hardware and is deter-
mined at reset. See also little endian.

block: The three least significant bits of the program address. These corre-
spond to the address within a fetch packet of the first instruction being
addressed.

Appendix B

Glossary

 B-2

board support library (BSL): The BSL is a set of application programming
interfaces (APIs) consisting of target side DSP code used to configure
and control board level peripherals.

boot: The process of loading a program into program memory.

boot mode: The method of loading a program into program memory. The
’C6x DSP supports booting from external ROM or the host port interface
(HPI).

boundary: Boundary structural operator.

BSL: See board support library.

byte: A sequence of eight adjacent bits operated upon as a unit.

C
cache: A fast storage buffer in the central processing unit of a computer.

cache controller: System component that coordinates program accesses
between CPU program fetch mechanism, cache, and external memory.

CCS: Code Composer Studio.

central processing unit (CPU): The portion of the processor involved in
arithmetic, shifting, and Boolean logic operations, as well as the genera-
tion of data- and program-memory addresses. The CPU includes the
central arithmetic logic unit (CALU), the multiplier, and the auxiliary regis-
ter arithmetic unit (ARAU).

chip support library (CSL): The CSL is a set of application programming
interfaces (APIs) consisting of target side DSP code used to configure
and control all on-chip peripherals.

clock cycle: A periodic or sequence of events based on the input from the
external clock.

clock modes: Options used by the clock generator to change the internal
CPU clock frequency to a fraction or multiple of the frequency of the input
clock signal.

code: A set of instructions written to perform a task; a computer program or
part of a program.

coder-decoder or compression/decompression (codec): A device that
codes in one direction of transmission and decodes in another direction
of transmission.

Glossary

B-3Glossary

compiler: A computer program that translates programs in a high-level lan-
guage into their assembly-language equivalents.

compress and expand (compand): A quantization scheme for audio sig-
nals in which the input signal is compressed and, after processing, is re-
constructed at the output by expansion. There are two distinct compand-
ing schemes: A-law (used in Europe) and µ-law (used in the United
States).

control register: A register that contains bit fields that define the way a de-
vice operates.

control register file: A set of control registers.

corr_3x3: 3x3 correlation with rounding.

corr_gen: Generalized correlation.

CSL: See chip support library.

D

device ID: Configuration register that identifies each peripheral component
interconnect (PCI).

digital signal processor (DSP): A semiconductor that turns analog signals
such as sound or light into digital signals, which are discrete or discontin-
uous electrical impulses, so that they can be manipulated.

dilate_bin: 3x3 binary dilation.

direct memory access (DMA): A mechanism whereby a device other than
the host processor contends for and receives mastery of the memory bus
so that data transfers can take place independent of the host.

DMA : See direct memory access.

DMA source: The module where the DMA data originates. DMA data is read
from the DMA source.

DMA transfer: The process of transferring data from one part of memory to
another. Each DMA transfer consists of a read bus cycle (source to DMA
holding register) and a write bus cycle (DMA holding register to destina-
tion).

Glossary

 B-4

E

erode_bin: 3x3 binary erosion.

errdif_bin: Error diffusion, binary output.

evaluation module (EVM): Board and software tools that allow the user to
evaluate a specific device.

external interrupt: A hardware interrupt triggered by a specific value on a
pin.

external memory interface (EMIF): Microprocessor hardware that is used
to read to and write from off-chip memory.

F

fast Fourier transform (FFT): An efficient method of computing the discrete
Fourier transform algorithm, which transforms functions between the
time domain and the frequency domain.

fdct_8x8: Forward discrete cosine transform (FDCT).

fetch packet: A contiguous 8-word series of instructions fetched by the CPU
and aligned on an 8-word boundary.

FFT: See fast fourier transform.

flag: A binary status indicator whose state indicates whether a particular
condition has occurred or is in effect.

frame: An 8-word space in the cache RAMs. Each fetch packet in the cache
resides in only one frame. A cache update loads a frame with the re-
quested fetch packet. The cache contains 512 frames.

G

global interrupt enable bit (GIE): A bit in the control status register (CSR)
that is used to enable or disable maskable interrupts.

Glossary

B-5Glossary

H

HAL: Hardware abstraction layer of the CSL. The HAL underlies the service
layer and provides it a set of macros and constants for manipulating the
peripheral registers at the lowest level. It is a low-level symbolic interface
into the hardware providing symbols that describe peripheral registers/
bitfields and macros for manipulating them.

histogram: Histogram computation.

host: A device to which other devices (peripherals) are connected and that
generally controls those devices.

host port interface (HPI): A parallel interface that the CPU uses to commu-
nicate with a host processor.

HPI: See host port interface; see also HPI module.

I

idct_8x8: Inverse discrete cosine transform (IDCT).

index: A relative offset in the program address that specifies which of the
512 frames in the cache into which the current access is mapped.

indirect addressing: An addressing mode in which an address points to
another pointer rather than to the actual data; this mode is prohibited in
RISC architecture.

instruction fetch packet: A group of up to eight instructions held in memory
for execution by the CPU.

internal interrupt: A hardware interrupt caused by an on-chip peripheral.

interrupt: A signal sent by hardware or software to a processor requesting
attention. An interrupt tells the processor to suspend its current opera-
tion, save the current task status, and perform a particular set of instruc-
tions. Interrupts communicate with the operating system and prioritize
tasks to be performed.

interrupt service fetch packet (ISFP): A fetch packet used to service inter-
rupts. If eight instructions are insufficient, the user must branch out of this
block for additional interrupt service. If the delay slots of the branch do
not reside within the ISFP, execution continues from execute packets in
the next fetch packet (the next ISFP).

Glossary

 B-6

interrupt service routine (ISR): A module of code that is executed in re-
sponse to a hardware or software interrupt.

interrupt service table (IST) A table containing a corresponding entry for
each of the 16 physical interrupts. Each entry is a single-fetch packet and
has a label associated with it.

Internal peripherals: Devices connected to and controlled by a host device.
The ’C6x internal peripherals include the direct memory access (DMA)
controller, multichannel buffered serial ports (McBSPs), host port inter-
face (HPI), external memory-interface (EMIF), and runtime support tim-
ers.

IST: See interrupt service table.

L
least significant bit (LSB): The lowest-order bit in a word.

linker: A software tool that combines object files to form an object module,
which can be loaded into memory and executed.

little endian: An addressing protocol in which bytes are numbered from right
to left within a word. More significant bytes in a word have higher-num-
bered addresses. Endian ordering is specific to hardware and is deter-
mined at reset. See also big endian.

M
µ-law companding: See compress and expand (compand).

mad_8x8: 8x8 minimum absolute difference.

mad_16x16: 16x16 minimum absolute difference.

maskable interrupt : A hardware interrupt that can be enabled or disabled
through software.

median_3x3: 3x3 median filter.

memory map: A graphical representation of a computer system’s memory,
showing the locations of program space, data space, reserved space,
and other memory-resident elements.

memory-mapped register: An on-chip register mapped to an address in
memory. Some memory-mapped registers are mapped to data memory,
and some are mapped to input/output memory.

Glossary

B-7Glossary

most significant bit (MSB): The highest order bit in a word.

multichannel buffered serial port (McBSP): An on-chip full-duplex circuit
that provides direct serial communication through several channels to
external serial devices.

multiplexer: A device for selecting one of several available signals.

N

nonmaskable interrupt (NMI): An interrupt that can be neither masked nor
disabled.

O

object file: A file that has been assembled or linked and contains machine
language object code.

off chip: A state of being external to a device.

on chip: A state of being internal to a device.

P

perimeter: Perimeter structural operator.

peripheral: A device connected to and usually controlled by a host device.

pix_expand: Pixel expand.

pix_sat: Pixel saturate.

program cache: A fast memory cache for storing program instructions al-
lowing for quick execution.

program memory: Memory accessed through the ‘C6x’s program fetch in-
terface.

PWR: Power; see PWR module.

PWR module: PWR is an API module that is used to configure the power-
down control registers, if applicable, and to invoke various power-down
modes.

Glossary

 B-8

Q
quantize: Matrix quantization with rounding.

R
random-access memory (RAM): A type of memory device in which the

individual locations can be accessed in any order.

register: A small area of high speed memory located within a processor or
electronic device that is used for temporarily storing data or instructions.
Each register is given a name, contains a few bytes of information, and
is referenced by programs.

reduced-instruction-set computer (RISC): A computer whose instruction
set and related decode mechanism are much simpler than those of micro-
programmed complex instruction set computers. The result is a higher
instruction throughput and a faster real-time interrupt service response
from a smaller, cost-effective chip.

reset: A means of bringing the CPU to a known state by setting the registers
and control bits to predetermined values and signaling execution to start
at a specified address.

RTOS Real-time operating system.

S
scale_horz: Horizontal scaling.

scale_vert: Vertical scaling.

service layer: The top layer of the 2-layer chip support library architecture
providing high-level APIs into the CSL and BSL. The service layer is
where the actual APIs are defined and is the layer the user interfaces to.

sobel: Sobel edge detection.

synchronous-burst static random-access memory (SBSRAM): RAM
whose contents does not have to be refreshed periodically. Transfer of
data is at a fixed rate relative to the clock speed of the device, but the
speed is increased.

synchronous dynamic random-access memory (SDRAM): RAM whose
contents is refreshed periodically so the data is not lost. Transfer of data
is at a fixed rate relative to the clock speed of the device.

Glossary

B-9Glossary

syntax: The grammatical and structural rules of a language. All higher-level
programming languages possess a formal syntax.

system software: The blanketing term used to denote collectively the chip
support libraries and board support libraries.

T

tag: The 18 most significant bits of the program address. This value corre-
sponds to the physical address of the fetch packet that is in that frame.

threshold: Image thresholding.

timer: A programmable peripheral used to generate pulses or to time
events.

TIMER module: TIMER is an API module used for configuring the timer reg-
isters.

W

wave_horz: Horizontal wavelet transform.

wave_vert: Vertical wavelet transform.

word: A multiple of eight bits that is operated upon as a unit. For the ‘C6x,
a word is 32 bits in length.

Index

Index-1

Index

A
A-law companding, defined B-1

address, defined B-1

API, defined B-1

application programming interface, defined B-1

assembler, defined B-1

assert, defined B-1

B
big endian, defined B-1

bit, defined B-1

block, defined B-1

board support library, defined B-2

boot, defined B-2

boot mode, defined B-2

boundary
defined B-2
IMGLIB function descriptions 3-4
IMGLIB reference 5-22

BSL, defined B-2

byte, defined B-2

C
cache, defined B-2

cache controller, defined B-2

CCS, defined B-2

central processing unit (CPU), defined B-2

chip support library, defined B-2

clock cycle, defined B-2

clock modes, defined B-2

code, defined B-2

coder-decoder, defined B-2

compiler, defined B-3

compress and expand (compand), defined B-3

compression/decompression, functions table 4-2

compression/decompression functions, IMGLIB
reference 5-2

control register, defined B-3

control register file, defined B-3

corr_3x3
IMGLIB function descriptions 3-6
IMGLIB reference 5-36

corr_gen
IMGLIB function descriptions 3-6
IMGLIB reference 5-39

correlation 3-6

CSL, defined B-3

D
DCT (discrete cosine transform), forward and

inverse 3-2

device ID, defined B-3

digital signal processor (DSP), defined B-3

dilate_bin
IMGLIB function descriptions 3-4
IMGLIB reference 5-24

dilation 3-4

direct memory access (DMA)
defined B-3
source, defined B-3
transfer, defined B-3

DMA, defined B-3

Index

Index-2

E
edge detection 3-4
erode_bin

IMGLIB function descriptions 3-4
IMGLIB reference 5-25

erosion 3-4
errdif_bin

IMGLIB function descriptions 3-6
IMGLIB reference 5-41

error diffusion 3-6
evaluation module, defined B-4
expand 3-6
external interrupt, defined B-4
external memory interface (EMIF), defined B-4

F
fdct_8x8

IMGLIB function descriptions 3-2
IMGLIB reference 5-2

fetch packet, defined B-4
filtering

median 3-6
picture, functions table 4-4

flag, defined B-4
forward and inverse DCT 3-2
frame, defined B-4

G
general-purpose imaging functions, IMGLIB

reference 5-22
GIE bit, defined B-4

H
H.26x 3-2, 3-3
HAL, defined B-5
histogram 3-4

IMGLIB function descriptions 3-4
IMGLIB reference 5-27

horizontal scaling 3-7
host, defined B-5
host port interface (HPI), defined B-5
HPI, defined B-5

I
idct_8x8

IMGLIB function descriptions 3-2
IMGLIB reference 5-4

image thresholding 3-5
imaging, general purpose, functions table 4-3
IMGLIB

calling an IMGLIB function from Assembly 2-3
calling an IMGLIB function from C 2-3

Code Composer Studio users 2-3
features and benefits 1-2
functions, table 4-2

compression/decompression 4-2
general-purpose imaging 4-3
picture filtering 4-4

how IMGLIB deals with overflow and scal-
ing 2-4

how IMGLIB is tested 2-4
how to install 2-2
how to rebuild IMGLIB 2-4
introduction 1-1, 1-2
software routines 1-2
using IMGLIB 2-3

IMGLIB reference
boundary 5-22
compression/decompression functions 5-2
corr_3x3 5-36
corr_gen 5-39
dilate_bin 5-24
erode_bin 5-25
errdif_bin 5-41
fdct_8x8 5-2
general-purpose imaging 5-22
histogram 5-27
idct_8x8 5-4
mad_16x16 5-9
mad_8x8 5-7
median_3x3 5-45
perimeter 5-30
picture filtering/format conversion

functions 5-36
pix_expand 5-46
pix_sat 5-47
quantize 5-12
scale_horz 5-49
scale_vert 5-51
sobel 5-32
threshold 5-33
wave_horz 5-14
wave_vert 5-18

Index

Index-3

index, defined B-5

indirect addressing, defined B-5

installing IMGLIB 2-2

instruction fetch packet, defined B-5

internal interrupt, defined B-5

internal peripherals, defined B-6

interrupt, defined B-5

interrupt service fetch packet (ISFP), defined B-5

interrupt service routine (ISR), defined B-6

interrupt service table (IST), defined B-6

IST, defined B-6

J
JPEG 3-2, 3-3

L
least significant bit (LSB), defined B-6

linker, defined B-6

little endian, defined B-6

M
m-law companding, defined B-6

mad_16x16
IMGLIB function descriptions 3-3
IMGLIB reference 5-9

mad_8x8
IMGLIB function descriptions 3-3
IMGLIB reference 5-7

maskable interrupt, defined B-6

median filtering 3-6

median_3x3
IMGLIB function descriptions 3-6
IMGLIB reference 5-45

memory map, defined B-6

memory-mapped register, defined B-6

minimum absolute difference 3-3

most significant bit (MSB), defined B-7

MPEG 3-2, 3-3

multichannel buffered serial port (McBSP),
defined B-7

multiplexer, defined B-7

N
nonmaskable interrupt (NMI), defined B-7

O
object file, defined B-7
off chip, defined B-7
on chip, defined B-7
overflow and scaling 2-4

P
perimeter

IMGLIB function descriptions 3-4
IMGLIB reference 5-30

peripheral, defined B-7
picture filtering, functions table 4-4
picture filtering/format conversion functions, IMGLIB

reference 5-36
pix_expand

IMGLIB function descriptions 3-6
IMGLIB reference 5-46

pix_sat
IMGLIB function descriptions 3-6
IMGLIB reference 5-47

program cache, defined B-7
program memory, defined B-7
PWR, defined B-7
PWR module, defined B-7

Q
quantize 3-3

IMGLIB function descriptions 3-3
IMGLIB reference 5-12

R
random-access memory (RAM), defined B-8
rebuilding IMGLIB 2-4
reduced-instruction-set computer (RISC),

defined B-8
register, defined B-8
reset, defined B-8
RTOS, defined B-8

Index

Index-4

S
saturate 3-6
scale_horz

IMGLIB function descriptions 3-7
IMGLIB reference 5-49

scale_vert
IMGLIB function descriptions 3-7
IMGLIB reference 5-51

scaling 3-7
service layer, defined B-8
sobel

IMGLIB function descriptions 3-4
IMGLIB reference 5-32

STDINC module, defined B-8
synchronous dynamic random-access memory

(SDRAM), defined B-8
synchronous-burst static random-access memory

(SBSRAM), defined B-8
syntax, defined B-9
system software, defined B-9

T
tag, defined B-9
testing, how IMGLIB is tested 2-4

threshold
IMGLIB function descriptions 3-5
IMGLIB reference 5-33

timer, defined B-9
TIMER module, defined B-9

U
using IMGLIB 2-3

calling an IMGLIB function from C, Code
Composer Studio users 2-3

V
vertical scaling 3-7

W
wave_horz

IMGLIB function descriptions 3-3
IMGLIB reference 5-14

wave_vert
IMGLIB function descriptions 3-3
IMGLIB reference 5-18

wavelet 3-3
word, defined B-9

	IMPORTANT NOTICE
	Read This First
	About This Manual
	How to Use This Manual
	Notational Conventions
	Related Documentation From Texas Instruments

	Contents
	Tables
	Introduction
	Introduction to the TI ’62x IMGLIB
	Features and Benefits
	Software Routines

	Installing and Using IMGLIB
	How to Install IMGLIB
	Using IMGLIB
	Calling an IMGLIB Function From C
	Code Composer Studio Users

	Calling an IMGLIB Function from Assembly
	How IMGLIB is Tested - Allowable Error
	How IMGLIB Deals with Overflow and Scaling Issues
	Code Composter Studio Users

	How to Rebuild IMGLIB

	IMGLIB Function Descriptions
	IMGLIB Functions Overview
	Compression/Decompression
	Image Analysis
	Picture Filtering/Format Conversions

	IMGLIB Function Tables
	IMGLIB Function Tables

	IMGLIB Reference
	Compression/Decompression
	fdct_8x8 - Forward Discrete Cosine Transform (FDCT)
	idct_8x8 - Inverse Discrete Cosine Transform (IDCT)
	mad_8x8 - 8x8 Minimum Absolute Difference
	mad_16x16 - 16x16 Minimum Absolute Difference
	quantize - Matrix Quantization with Rounding
	wave_horz - Horizontal Wavelet Transform
	wave_vert - Vertical Wavelet Transform

	Image Analysis
	boundary - Boundary Structural Operator
	dilate_bin - 3x3 Binary Dilation
	erode_bin - 3x3 Binary Erosion
	histogram - Histogram Computation
	perimeter - Perimeter Structural Operator
	sobel - Sobel Edge Detection
	threshold - Image Thresholding

	Picture Filtering/Format Conversions
	corr_3x3 - 3x3 Correlation with Rounding
	corr_gen - Generalized Correlation
	errdif_bin - Error Diffusion, Binary Output
	median_3x3 - 3x3 Median Filter
	pix_expand - Pixel Expand
	pix_sat - Pixel Saturate
	scale_horz - Horizontal Scaling
	scale_vert - Vertical Scaling

	Performance/ Warranty and Support
	Performance Considerations
	Warranty
	IMGLIB Software Updates
	IMGLIB Customer Support

	Glossary
	Index

