DOCUMENTATION FOR DASM, a high level macro cross assembler for:

-6502 (and 6507)

-68705

-6803

-HD6303 (extension of 6803)

-68HC11

DASM was created in 1988 by Matthew Dillon (dillon@apollo.backplane.com)

and modified in 1995 by Olaf 'Rhialto' Seibert (rhialto@polderland.nl), and

is now updated and maintained by Andrew Davie (atari2600@taswegian.com)

DASM's homepage is http://www.atari2600.org/dasm

DASM is freely re-distributable, and provided with full source-code to

allow recompilation for other target-platforms.

PREFACE FROM MATT:

 Over the last year my work has included writing software to drive small

 single-chip microcomputers for various things (remote telemetry units,

 for instance). I have had need to program quite a few different

 processors over that time.

 At the beginning, I used an awful macro assembler running on an IBM-PC.

 I *really* wanted to do it on my Amiga. Thus the writing of this

 program.

 Feel free to suggest other similar processors for me to add to the list!

 The processor type is specified with a pseudo-op (see below). This

 assembler produces only binary output in one of three formats described

 below. In general, one has a master assembly file which INCLUDEs all

 the modules.

 Also provided is FTOHEX which converts an output file in one of the

 three formats to an intel-hex format suitable for many intelligent

 prom programmers (I have a GTEK).

 YES it's packed with features!

FEATURES:

 -fast assembly

 -supports several common 8 bit processor models (NOT 8086, thank god!)

 -takes as many passes as needed

 -automatic checksum generation, special symbol '...'

 -several binary output formats available. Format 2 allows reverse

 indexed origins.

 -multiple segments, BSS segments (no generation), relocatable origin.

 -expressions, as in C but [] is used instead of () for parenthesis.

 (all expressions are computed with 32 bit integers)

 -no real limitation on label size, label values are 32 bits.

 -complex pseudo ops, repeat loops, macros, etc....

PREFACE FROM ANDREW (APRIL/2003)

The documentation is lagging a bit behind the modifications. Essentially the information contained herein is correct, but there have been minor changes to the formatting of output data.

Please see the accompanying ‘README.TXT’ in the distributable root directory for a list of recent changes to the package.

COMMAND LINE:

dasm srcfile [options]

options: -f# select output format 1-3 (default 1, see below)

 -oname select output file name (else a.out)

 -lname select list file name (else none generated)

 -Lname list file, containing all passes

 -sname select symbol dump file (else none generated)

 -v# select verboseness 0-4 (default 0, see below)

 -d
 debug mode

 -DSYMBOL

 predefine a symbol, set to 0

 -DSYMBOL=EXPRESSION predefine a symbol, set to exp

 -MSYMBOL=EXPRESSION

define label as in EQM (same as –D)

 -Idir search directory for include and incbin

 -p# max number of passes

 -P# max number of passes, with less checks

 -T#
sort symbol table by (0 = alphabetic (default)

or (non-zero= address/value)

Example: dasm master.asm -f2 -oout -llist -v3 -DVER=4

Note:
A slash (/) or dash (-) must prefix options.

Return Value:

The assembler will return 0 on successful compilation, 1 otherwise.

FORMAT OPTIONS:

 1 (DEFAULT)

The output file contains a two byte origin in LSB,MSB order, then

data until the end of the file.

Restrictions:
Any instructions which generate output (within an

initialized segment) must do so with an ascending PC. Initialized

segments must occur in ascending order.

 2 RAS (Random Access Segment)

The output file contains one or more hunks. Each hunk consists

of a 2 byte origin (LSB,MSB), 2 byte length (LSB,MSB), and that

number of data bytes. The hunks occur in the same order as

initialized segments in the assembly. There are no restrictions

to segment ordering (i.e. reverse indexed ORG statements are

allowed). The next hunk begins after the previous hunk's data,

until the end of the file.

 3 RAW (Raw)

The output file contains data only (format #1 without the 2 byte

header). Restrictions are the same as for format #1.

Format 3 RAW (Raw format)

 Same as format 1, but NO header origin is generated. You get

 nothing but data.

VERBOSE OPTIONS:

 0
(default)

Only warnings and errors are generated

 1

-Segment list information generated after each pass

-Include file names are displayed

-statistics on why the assembler is going to make another pass

 R1,R2 reason code: R3

 where R1 is the number of times the assembler encountered

 something requiring another pass to resolve. R2 is the

 number of references to unknown symbols which occured in the

 pass (but only R1 determines the need for another pass). R3

 is a BITMASK of the reasons why another pass is required.

 See the end of this document for bit designations.

 2

mismatches between program labels and equates are displayed

on every pass (usually none occur in the first pass unless you

have re-declared a symbol name).

displayed information for symbols:

 ???? = unknown value

 str = symbol is a string

 eqm = symbol is an eqm macro

 (r) = symbol has been referenced

 (s) = symbol created with SET or EQM pseudo-op

 3

 Unresolved and unreferenced symbols are displayed every pass

 (unsorted, sorry)

 4

 An entire symbol list is displayed every pass to STDOUT.

 (unsorted, sorry)

PROCESSOR MODEL:

 The processor model is chosen with the PROCESSOR pseudo-op and should

 be the first thing you do in your assembly file. Different processor

 models use different integer formats (see below). The word order does

 not effect the headers in the output files (-f1 and -f2), which are

 always LSB,MSB. The word ordering effects all address, word, and

 long generation.

 Only one PROCESSOR pseudo-op may be declared in the entire assembly,

 and should be the first thing encountered.

-6502
 LSB,MSB

-68HC11 MSB,LSB

-68705
 MSB,LSB

-6803
 MSB,LSB

-HD6303 MSB,LSB

SEGMENTS:

 The SEG pseudo-op creates/sets the current segment. Each segment has

 it's own origin and is optionally an 'uninitialized' segment.

 Unitialized segments produce no output and have no restrictions. This

 is useful for determining the size of a certain assembly sequence

 without generating code, and for assigning RAM to labels.

 'Initialized' segments produce output. The following should be

 considered when generating roms:

 (1) The default fill character when using ORG (and format 1 or 3) to

skip forward is 00. This is a GLOBAL default and effects all

segments. See ORG.

 (2) The default fill character for DS is 00 and is independant of

the default fill character for ORG (see DS).

GENERAL:

 Most everything is recursive. You cannot have a macro DEFINITION

 within a macro definition, but can nest macro calls, repeat loops,

 and include files.

 The other major feature in this assembler is the SUBROUTINE pseudo-op,

 which logically separates local labels (starting with a dot). This

 allows you to reuse label names (for example, .1 .fail) rather than

 think up crazy combinations of the current subroutine to keep it all

 unique.

 Almost nothing need be resolved in pass 1.
The assembler will make

 multiple passes in an attempt to resolve the assembly (including just

 one pass if everything is resolved immediately).

PSEUDOPS:

INCLUDE "name"

 Include another assembly file.

#if OlafIncbin

[label] INCBIN
 "name"

 Include another file literally in the output.

#endif

#if OlafIncdir

INCDIR
 "directory name"

 Add the given directory name to the list of places where

 INCLUDE and INCBIN search their files. First, the names are

 tried relative to the current directory, if that fails and

 the name is not an absolute pathname, the list is tried.

 You can optionally end the name with a /. AmigaDOS filename

 conventions imply that two slashes at the

 end of an INCDIR (dir//) indicates the parent directory, and

 so does an INCLUDE /filename.

 The command-line option -Idir is equivalent to an INCDIR

 directive placed before the source file.

 Currently the list is not cleared between passes, but each

 exact directory name is added to the list only once.

 This may change in subsequent releases.

#endif

[label] SEG[.U] name

 This sets the current segment, creating it if neccessary. If

 a .U extension is specified on segment creation, the segment

 is an UNINITIALIZED segment. The .U is not needed when going

 back to an already created uninitialized segment, though it

 makes the code more readable.

[label] DC[.BWL] exp,exp,exp ...

 Declare data in the current segment. No output is generated if

 within a .U segment. Note that the byte ordering for the

 selected processor is used for each entry.

 The default size extension is a byte.

#if OlafByte

 BYTE, WORD and LONG are synonyms for DC.B, DC.W and DC.L.

#endif

[label] DS[.BWL] exp[,filler]

 declare space (default filler is 0). Data is not generated if

 within an uninitialized segment. Note that the number of bytes

 generated is exp * entrysize (1,2, or 4)

 The default size extension is a byte.

 Note that the default filler is always 0 (has nothing to do

 with the ORG default filler).

[label] DV[.BWL] eqmlabel exp,exp,exp....

 This is equivalent to DC, but each exp in the list is passed

 through the symbolic expression specified by the EQM label.

 The expression is held in a special symbol dotdot '..' on each

 call to the EQM label.

 See EQM below

[label] HEX
 hh hh hh..

 This sets down raw HEX data. Spaces are optional between bytes.

 NO EXPRESSIONS are allowed. Note that you do NOT place a $

 in front of the digits. This is a short form for creating

 tables compactly. Data is always layed down on a byte-by-byte

 basis.

 Example:
 HEX 1A45 45 13254F 3E12

ERR

 Abort assembly.

[label] ORG
 exp[,DefaultFillVal]

 This pseudop sets the current origin. You can also set the

 global default fill character (a byte value) with this

 pseudoop. NOTE that no filler is generated until the first

 data-generating opcode/psueoop is encountered after this one.

 Sequences like:

org 0,255

org 100,0

org 200

dc 23

 will result in 200 zero's and a 23. This allows you to specify

 some ORG, then change your mind and specify some other (lower

 address) ORG without causing an error (assuming nothing is

 generated inbetween).

 Normally, DS and ALIGN are used to generate specific filler

 values.

[label] RORG
 exp

 This activates the relocatable origin. All generated

 addresses, including '.', although physically placed at the

 true origin, will use values from the relocatable origin.

 While in effect both the physical origin and relocatable origin

 are updated.

 The relocatable origin can skip around (no limitations). The

 relocatable origin is a function of the segment. That is, you

 can still SEG to another segment that does not have a

 relocatable origin activated, do other (independant) stuff

 there, and then switch back to the current segment and continue

 where you left off.

PROCESSOR model

 do not quote. model is one of: 6502,6803,HD6303,68705,68HC11

 Can only be executed once, and should be the first thing

 encountered by the assembler.

ECHO exp,exp,exp

 The expressions (which may also be strings), are echoed on the

 screen and into the list file.

[label] REND

 Deactivate the relocatable origin for the current segment.

 Generation uses the real origin for reference.

[label] ALIGN
 N[,fill]

 Align the current PC to an N byte boundry.
The default

 fill character is always 0, and has nothing to do with

 the default fill character specifiable in an ORG.

[label] SUBROUTINE name

 This isn't really a subroutine, but a boundry between sets of

 temporary labels (which begin with a dot).
Temporary label

 names are unique within segments of code bounded by SUBROUTINE:

CHARLIE subroutine

ldx #10

.1
dex

bne .1

BEN
subroutine

ldx #20

.qq
dex

bne .qq

 Automatic temporary label boundries occur for each macro level.

 Usually temporary labels are used in macros and within actual

 subroutines (so you don't have to think up a thousand different

 names)

symbol
EQU
 exp

#if OlafAsgn

symbol
=
 exp

#endif

 The expression is evaluated and the result assigned to the

 symbol.

#if OlafDotAssign

 If this option is enabled, you can use the common idiom of

. EQU . + 3
(or . = .+3)

 in other words, you can assign to "." (or "*" if OlafStar

 is also enabled) instead of an ORG or RORG directive.

 More formally, a directive of the form ". EQU expr" is

 interpreted as if it were written " (R)ORG expr".

 The RORG is used if a relocatable origin is already in effect,

 otherwise ORG is used. Note that the first example is NOT

 equivalent with "DS.B 3" when the rorg is in effect.

#endif

symbol
EQM
 exp

 The STRING representing the expression is assigned to the

 symbol. Occurances of the label in later expressions causes

 the string to be evaluated for each occurance. Also used in

 conjuction with the DV psuedo-op.

symbol
SET
 exp

 Same as EQU, but the symbol may be reassigned later.

MAC
 name

 Declare a macro. lines between MAC and ENDM are the macro.

 You cannot recursively declare a macro. You CAN recursively

 use a macro (reference a macro in a macro). No label is

 allowed to the left of MAC or ENDM.

 Arguments passed to macros are referenced with: {#}. The first

 argument passed to a macro would thus be {1}. You should

 always use LOCAL labels (.name) inside macros which you use

 more than once. {0} represents an EXACT substitution of the

 ENTIRE argument line.

ENDM

 end of macro def. NO LABEL ALLOWED ON THE LEFT!

MEXIT

 Used in conjuction with conditionals. Exits the current macro

 level.

[label] IFCONST exp

 Is TRUE if the expression result is defined, FALSE otherwise

 and NO error is generated if the expression is undefined.

[label] IFNCONST exp

 Is TRUE if the expression result is undefined, FALSE otherwise

 and NO error is generated if the expression is undefined.

[label] IF
 exp

 Is TRUE if the expression result is defined AND non-zero.

 Is FALSE if the expression result is defined AND zero.

 Neither IF or ELSE will be executed if the expression result

 is undefined. If the expression is undefined, another assembly

 pass is automatically taken.

#if OlafPhase

 If this happens, phase errors in the next pass only will not

 be reported unless the verboseness is 1 or more.

#endif

[label] ELSE

 ELSE the current IF.

[label] ENDIF

[label] EIF

 Terminate an IF. ENDIF and EIF are equivalent.

[label] REPEAT
 exp

[label] REPEND

 Repeat code between REPEAT/REPEND 'exp' times.

#if DAD

if exp == 0,

 the code repeats forever. exp is evaluated once.

If exp == 0, the repeat loop is ignored.

If exp < 0, a warning “REPEAT parameter < 0 (ignored)” is generated

and the repeat loop is ignored.

#endif

Y SET 0

 REPEAT 10

X SET 0

 REPEAT 10

 DC
 X,Y

X SET X + 1

 REPEND

Y SET Y + 1

 REPEND

 generates an output table:
0,0 1,0 2,0 ... 9,0 0,1 1,1 2,1

 ... 9,1, etc...

 Labels within a REPEAT/REPEND should be temporary labels with a

 SUBROUTINE pseudo-op to keep them unique.

 The Label to the left of REPEND is assigned AFTER the loop

 FINISHES.

[label] XXX[.force] operand

 XXX is some mnemonic, not necessarily three characters long.

 The .FORCE optional extension is used to force specific

 addressing modes (see below).

[label] LIST ON or OFF

 Globally turns listing on or off, starting with the current

 line.

#if OlafList

 When you give LOCALON or LOCALOFF the effect is local to the

 current macro or included file. For a line to be listed both

 the global and local list switches must be on.

#endif

#if OlafDotop

All pseudo-ops (and incidentally also the mnemonics) can be

prefixed with a . for compatibility with other assemblers.

So .IF is the same as IF. This works only because lone .FORCE

extensions are meaningless.

#endif

#if OlafFreeFormat

The format of each input line is free: first all leading

spaces are discarded, and the first word is examined. If it

does not look like a directive or opcode (as known at that point),

it is taken as a label. This is sort-of nasty if you like labels

with names like END.

The two xxxFormat options are mutually exclusive.

#endif

#if OlafHashFormat

With this option an initial # (after optional initial spaces)

turns the next word into a directive/opcode.

A ^ skips more spaces and makes the next word a label.

#endif

GENERAL:

 The label will be set to the current ORG/RORG either before or after

 a pseudo-op is executed. Most of the time, the label to the left of a

 pseudo-op is the current ORG/RORG. The following pseudo-op's labels are

 created AFTER execution of the pseudo-op:

SEG, ORG, RORG, REND, ALIGN

EXTENSIONS:

 FORCE extensions are used to force an addressing mode. In some cases,

 you can optimize the assembly to take fewer passes by telling it the

 addressing mode. Force extensions are also used with DS,DC, and DV

 to determine the element size. NOT ALL EXTENSIONS APPLY TO ALL

 PROCESSORS!

example: lda.z charlie

i -implied

ind -indirect word

0 -implied

0x -implied indexing (0,x)

0y -implied indexing (0,y)

b -byte address

bx -byte address indexed x

by -byte address indexed y

w -word address

wx -word address indexed x

wy -word address indexed y

l -longword (4 bytes) (DS/DC/DV)

r -relative

u -uninitialized (SEG)

First character equivalent substitutions:

b z d
 (byte, zeropage, direct)

w e a
 (word, extended, absolute)

ASSEMBLER PASSES:

 The assembler may have to make several passes through the source

 code to resolve all generation. The number of passes is not

 limited to two. Since this may result in an unexpected, verbose

 option 2, 3, and 4 have been provided to allow determination of the

 cause. The assembler will give up if it thinks it can't do the

 assembly in *any* number of passes.

 Error reporting could be better....

#if OlafPasses

 The check if another pass might resolve the source is pretty good, but

 not perfect. You can specify the maximum number of passes to do

 (default -p10), and with the -P option you can override the normal check.

 This allows the following contrived example to resolve in 12 passes:

org 1

repeat [[x < 11] ? [x-11]] + 11

dc.b
x

repend

 x:

#endif

EXPRESSIONS:

[] may be used to group expressions. The precedense of operators

is the same as for the C language in almost all respects. Use

brackets [] when you are unsure. The reason () cannot be used to

group expressions is due to a conflict with the 6502 and other

assembly languages.

#if OlafBraKet

It is possible to use () instead of [] in expressions following

pseudo-ops, but not following mnemonics. So this works:

if target & (pet3001 | pet4001), but this doesn't:

lda #target & (pet3001 | pet4001).

#endif

Some operators, such as ||, can return a resolved value even if

one of the expressions is not resolved. Operators are as follows:

NOTE WELL! Some operations will result in non-byte values when a

byte value was wanted.
For example:
~1 is NOT $FF, but

$FFFFFFFF. Preceding it with a < (take LSB of) will solve the

problem. ALL ARITHMETIC IS CARRIED OUT IN 32 BITS. The final

Result will be automatically truncated to the maximum handleable

by the particular machine language (usually a word) when applied

to standard mnemonics.

prec
 UNARY

20 ~exp one's complement.

20 -exp negation

20 !exp not expression (returns 0 if exp non-zero, 1 if exp zero)

20 <exp take LSB byte of a 16 bit expression

20 >exp take MSB byte of an expression

 BINARY

19 *
 multiplication

19 /
 division

19 %
 mod

18 +
 addition

18 -
 subtraction

17 >>,<< shift right, shift left

16 >,>= greater, greater equal

16 <,<= smaller, smaller equal

15 ==
 equal to. Try to use this instead of =

15 =
 exactly the same as == (exists compatibility)

15 !=
 not equal to

14 &
 logical and

13 ^
 logical xor

12 |
 logical or

11 &&
 left expression is true AND right expression is true

10 ||
 left expression is true OR right expression is true

 9 ?
 if left expression is true, result is right expression,

 else result is 0.
[10 ? 20] returns 20

 8 []
 group expressions

 7 ,
 separate expressions in list (also used in

 addressing mode resolution, BE CAREFUL!

 Note: The effect of the C conditional operator a ? b : c can be

 had with [a ? b - c] + c.

 Constants:

nnn
decimal

0nnn
octal

%nnn
binary

$nnn
hex

'c character

"cc.." string (NOT zero terminated if in DC/DS/DV)

[exp]d
the constant expressions is evaluated and it's decimal

result turned into an ascii string.

 Symbols:

...
-holds CHECKSUM so far (of actual-generated stuff)

..
-holds evaluated value in DV pseudo op

.name
-represents a temporary symbol name. Temporary symbols

 may be reused inside MACROS and between SUBROUTINES, but

 may not be referenced across macros or across SUBROUTINEs.

.
-current program counter (as of the beginning of the

 instruction).

name
-beginning with an alpha character and containing letters,

 numbers, or '_'. Represents some global symbol name.

#if OlafStar

*
-synonym for ., when not confused as an operator.

#endif

#if OlafDol

nnn$
-temporary label, much like .name, except that defining

 a non-temporary label has the effect that SUBROUTINE

 has on .name.
They are unique within macros, like

 .name. Note that 0$ and 00$ are distinct, as are 8$

 and 010$.

 (mainly for compatibility with other assemblers.)

#endif

WHY codes:

 Each bit in the WHY word (verbose option 1) is a reason (why

 the assembler needs to do another pass), as follows:

 bit 0 expression in mnemonic not resolved

1 -

2 expression in a DC not resolved

3 expression in a DV not resolved (probably in DV's EQM symbol)

4 expression in a DV not resolved (could be in DV's EQM symbol)

5 expression in a DS not resolved

6 expression in an ALIGN not resolved

7 ALIGN: Relocatable origin not known (if in RORG at the time)

8 ALIGN: Normal origin not known
(if in ORG at the time)

9 EQU: expression not resolved

10 EQU: value mismatch from previous pass (phase error)

11 IF: expression not resolved

12 REPEAT: expression not resolved

13 a program label has been defined after it has been

 referenced (forward reference) and thus we need another

 pass

14 a program label's value is different from that of the

 previous pass (phase error)

 Certain errors will cause the assembly to abort immediately, others

 will wait until the current pass is other.
The remaining allow another

 pass to occur in the hopes the error will fix itself.

VERSIONS:

 V2.12

-Fixed macro naming bug (macros wouldn't work if the name after

 the 'mac' was in upper case).

 V2.11

-Fixed <exp >exp bug, <exp now means LSB, >exp MSB (it used to

 be reversed).

-Fixed many bugs in macros and other things

-Added automatic checksumming ... no more doing checksums manually!

-Added several new processors, including 6502.

-Source is now 16/32 bit int compatible, and will compile on an

 IBM-PC (the ultimate portability test)

 V2.01

-can now have REPEAT/REPEND's within macros

-fill field for DS.W is a word (used to be a byte fill)

-fill field for DS.L is a long (used to be a byte fill)

