_________________________________________________________________ `timescale 1ns/1ns module counter; reg clock; // declare reg data type for the clock integer count; // declare integer data type for the count initial // initialize things - this executes once at start begin clock = 0; count = 0; // initialize signals #340 $finish; // finish after 340 time ticks end /* an always statement to generate the clock, only one statement follows the always so we don't need a begin and an end */ always #10 clock = ~ clock; // delay is set to half the clock cycle /* an always statement to do the counting, runs at the same time (concurrent ly) as the other always statement */ always begin // wait here until the clock goes from 1 to 0 @ (negedge clock); // now handle the counting if (count == 7) count = 0; else count = count + 1; $display("time = ",$time," count = ", count); end endmodule __________________________________________________________________________ module identifiers; /* multi-line comments in Verilog look like C comments and // is OK in here */ // single-line comment in Verilog reg legal_identifier,two__underscores; reg _OK,OK_,OK_$,OK_123,CASE_SENSITIVE, case_sensitive; reg \/clock ,\a*b ; // white_space after escaped identifi er //reg $_BAD,123_BAD; // bad names even if we declare them! initial begin legal_identifier =0; // embedded underscores are OK two__underscores =0; // even two underscores in a row _OK = 0; // identifiers can start with undersc ore OK_ = 0; // and end with underscore OK$ = 0; // $ sign is OK: beware foreign keybo ards OK_123 =0; // embedded digits are OK CASE_SENSITIVE =0; // Verilog is case-sensitive case_sensitive =1; \/clock =0; // escaped identifier with \ breaks r ules \a*b =0; // but be careful! watch the spaces $display("Variable CASE_SENSITIVE= %d",CASE_SENSITIVE); $display("Variable case_sensitive= %d",case_sensitive); $display("Variable \/clock = %d",\/clock ); $display("Variable \\a*b = %d",\a*b ); end endmodule __________________________________________________________________________ module declarations_1; wire pwr_good,pwr_on,pwr_stable; // Explicitly declare wires integer i; // 32-bit, signed (2's complement) time t; // 64-bit, unsigned, behaves like a 64-bit reg event e; // Declare an event data type real r; // Real data type of implementation defined size // assign statement continuously drives a wire... assign pwr_stable = 1'b1; assign pwr_on = 1; // 1 or 1'b1 assign pwr_good = pwr_on & pwr_stable; initial begin i = 123.456; // There must be a digit on either side r = 123456e-3; // of the decimal point if it is present. t = 123456e-3; // Time is rounded to 1 second by default. $display("i=%0g",i," t=%6.2f",t," r=%f",r); #2 $display("TIME=%0d",$time," ON=",pwr_on, " STABLE=",pwr_stable," GOOD=",pwr_good); $finish; end endmodule __________________________________________________________________________ module declarations_2; reg Q, Clk; wire D; // drive the wire (D) assign D = 1; // at +ve clock edge assign the value of wire D to the reg Q: always @(posedge Clk) Q = D; initial Clk = 0; always #10 Clk = ~ Clk; initial begin #50; $finish; end always begin $display("T=%2g", $time," D=",D," Clk=",Clk," Q=",Q); #10; end endmodule __________________________________________________________________________ module declarations_3; reg a,b,c,d,e; initial begin #10; a=0;b=0;c=0;d=0; #10; a=0;b=1;c=1;d=0; #10; a=0;b=0;c=1;d=1; #10; $stop; end always begin @(a or b or c or d) e = (a|b)&(c|d); $display("T=%0g",$time," e=",e); end endmodule __________________________________________________________________________ module declarations_4; wire Data; // a scalar net of type wire wire [31:0] ABus, DBus; // two 32-bit wide vector wir es... // DBus[31] = left-most = most-significant bit = msb // DBus[0] = right-most = least-significant bit = lsb // Notice the size declaration precedes the names // wire [31:0] TheBus, [15:0] BigBus; // illegal reg [3:0] vector; // a 4-bit vector register reg [4:7] nibble; // msb index < lsb index integer i; initial begin i = 1; vector = 'b1010; // vector without an index nibble = vector; // this is OK too #1; $display("T=%0g",$time," vector=", vector," nibble=", nibble); #2; $display("T=%0g",$time," Bus=%b",DBus[15:0]); end assign DBus [1] = 1; // this is a bit-select assign DBus [3:0] = 'b1111; // this is a part-select // assign DBus [0:3] = 'b1111; // illegal - wrong direction endmodule __________________________________________________________________________ module declarations_5; reg [31:0] VideoRam [7:0]; // a 8-word by 32-bit wide memory initial begin VideoRam[1] = 'bxz; // must specify an index for a memory VideoRam[2] = 1; VideoRam[7] = VideoRam[VideoRam[2]]; // need 2 clock cycles for this VideoRam[8] = 1; // careful! the compiler won't complain! // Verify what we entered: $display("VideoRam[0] is %b",VideoRam[0]); $display("VideoRam[1] is %b",VideoRam[1]); $display("VideoRam[2] is %b",VideoRam[2]); $display("VideoRam[7] is %b",VideoRam[7]); end endmodule __________________________________________________________________________ module declarations_6; integer Number [1:100]; // Notice that size follows name time Time_Log [1:1000]; // - as in array of reg // real Illegal [1:10]; // ***no real arrays*** endmodule __________________________________________________________________________ module constants; parameter H12_UNSIZED = 'h 12; // unsized hex 12 = decimal 18 parameter H12_SIZED = 6'h 12; // sized hex 12 = decimal 18 // Notice that a space between base and value is OK /* '' (single apostrophes) are not the same as the ' character */ parameter D42 = 8'B0010_1010; // bin 101010 = dec 42 // ...we can use underscores to increase readability. parameter D123 = 123; // unsized decimal (default) parameter D63 = 8'o 77; // sized octal, decimal 63 // parameter ILLEGAL = 1'o9; // no 9's in octal numbers ! /* A = 'hx and B = 'ox assume a 32 bit width */ parameter A = 'h x, B = 'o x, C = 8'b x, D = 'h z, E = 16'h ????; // ...we can use ? instead of z, same as E = 16'h zzzz // ...note automatic extension to 16 bits reg [3:0] B0011,Bxxx1,Bzzz1; real R1,R2,R3; integer I1,I3,I_3; parameter BXZ = 8'b1x0x1z0z; initial begin B0011 = 4'b11; Bxxx1 = 4'bx1; Bzzz1 = 4'bz1; // left padded R1 = 0.1e1; R2 = 2.0; R3 = 30E-01; // real numbers I1 = 1.1; I3 = 2.5; I_3 = -2.5; // IEEE rounds away from 0 end initial begin #1; $display ("H12_UNSIZED, H12_SIZED (hex) = %h, %h",H12_UNSIZED, H12_SIZED); $display("D42 (bin) = %b",D42," (dec) = %d",D42); $display("D123 (hex) = %h",D123," (dec) = %d",D123); $display("D63 (oct) = %o",D63); $display("A (hex) = %h",A," B (hex) = %h",B); $display("C (hex) = %h",C," D (hex) = %h",D," E (hex) = %h",E); $display("BXZ (bin) = %b",BXZ," (hex) = %h",BXZ); $display("B0011, Bxxx1, Bzzz1 (bin) = %b, %b, %b",B0011,Bxxx1,Bzzz1); $display("R1, R2, R3 (e, f, g) = %e, %f, %g", R1, R2, R3); $display("I1, I3, I_3 (d) = %d, %d, %d", I1, I3, I_3); end endmodule __________________________________________________________________________ module negative_numbers; parameter PA = -12, PB = -'d12, PC = -32'd12, PD = -4'd12; integer IA , IB , IC , ID ; reg [31:0] RA , RB , RC , RD ; initial begin #1; IA = -12; IB = -'d12; IC = -32'd12; ID = -4'd12; RA = -12; RB = -'d12; RC = -32'd12; RD = -4'd12; #1; $display(" parameter integer reg[31:0]"); $display ("-12 =",PA,IA,,,RA); $displayh(" ",,,,PA,,,,IA,,,,,RA); $display ("-'d12 =",,PB,IB,,,RB); $displayh(" ",,,,PB,,,,IB,,,,,RB); $display ("-32'd12 =",,PC,IC,,,RC); $displayh(" ",,,,PC,,,,IC,,,,,RC); $display ("-4'd12 =",,,,,,,,,,PD,ID,,,RD); $displayh(" ",,,,,,,,,,,PD,,,,ID,,,,,RD); end endmodule __________________________________________________________________________ module characters; /* " is ASCII 34 (hex 22), double quote ' is ASCII 39 (hex 27), tick or apostrophe / is ASCII 47 (hex 2F), forward slash \ is ASCII 92 (hex 5C), back slash ` is ASCII 96 (hex 60), accent grave | is ASCII 124 (hex 7C), vertical bar no standards for the graphic symbols for codes above 128... ´ is 171 (hex AB), accent acute in almost all fonts " is 210 (hex D2), open double quote, like 66 (some fonts) " is 211 (hex D3), close double quote, like 99 (some fonts) ' is 212 (hex D4), open single quote, like 6 (some fonts) ' is 213 (hex D5), close single quote, like 9 (some fonts) */ endmodule __________________________________________________________________________ module text; parameter A_String = "abc"; // string constant, must be on one line parameter Say = "Say \"Hey!\""; // use escape quote \" for an embedded quote parameter Tab = "\t"; // tab character parameter NewLine = "\n"; // newline character parameter BackSlash = "\\"; // back slash parameter Tick = "\047"; // ASCII code for tick in o ctal // parameter Illegal = "\500"; // illegal - no such ASCII code initial begin $display("A_String(str) = %s ",A_String," (hex) = %h ",A_String); $display("Say = %s ",Say," Say \"Hey!\""); $display("NewLine(str) = %s ",NewLine," (hex) = %h ",NewLine); \\ Following changed in 3rd printing to clarify use of backslash \\ $display("\(str) = %s ",BackSlash," (hex) = %h ",BackSlash); $display("\\(str) = %s ",BackSlash," (hex) = %h ",BackSlash); $display("Tab(str) = %s ",Tab," (hex) = %h ",Tab,"1 newline..."); $display("\n"); $display("Tick(str) = %s ",Tick," (hex) = %h ",Tick); #1.23; $display("Time is %t", $time); end endmodule __________________________________________________________________________ module define; `define G_BUSWIDTH 32 // bus width parameter (G_ for global) /* Note: there is no semicolon at end of a compiler directive. The character ` is ASCII 96 (hex 60), accent grave, it slopes down from left to right. It is not the tick or apostrophe character ' (ASCII 39 or hex 27)*/ wire [`G_BUSWIDTH:0]MyBus; // 32-bit bus endmodule __________________________________________________________________________ module operators; parameter A10xz = {1'b1,1'b0,1'bx,1'bz}; // concatenation parameter A01010101 = {4{2'b01}}; // replication // arithmetic operators: +, -, *, /, and modulus % parameter A1 = (3+2) %2; // result of % takes sign of argument #1 // logical shift operators: << (left), >> (right) parameter A2 = 4 >> 1; parameter A4 = 1 << 2; // zero fill // relational operators: <, <=, >, >= initial if (1 > 2) $stop; // logical operators: ! (negation), && (and), || (or) parameter B0 = !12; parameter B1 = 1 && 2; reg [2:0] A00x; initial begin A00x = 'b111; A00x = !2'bx1; end parameter C1 = 1 || (1/0); /* this may or may not cause an error: the short-circuit behavior of && and || is undefined. An evaluation including && or || may stop when an expression is known to be true or false */ // == (logical equality), != (logical inequality) parameter Ax = (1==1'bx); parameter Bx = (1'bx!=1'bz); parameter D0 = (1==0); parameter D1 = (1==1); // === case equality, !== (case inequality) // case operators only return true or false parameter E0 = (1===1'bx); parameter E1 = 4'b01xz === 4'b01xz; parameter F1 = (4'bxxxx === 4'bxxxx); // bitwise logical: // ~ (negation), & (and), | (inclusive or), // ^ (exclusive or), ~^ or ^~ (equivalence) parameter A00 = 2'b01 & 2'b10; // unary logical reduction: // & (and), ~& (nand), | (or), ~| (nor), // ^ (xor), ~^ or ^~ (xnor) parameter G1= & 4'b1111; // conditional expression x = a ? b : c // if (a) then x = b else x = c reg H0, a, b, c; initial begin a=1; b=0; c=1; H0=a?b:c; end reg[2:0] J01x, Jxxx, J01z, J011; initial begin Jxxx = 3'bxxx; J01z = 3'b01z; J011 = 3'b011; J01x = Jxxx ? J01z : J011; end // bitwise result initial begin #1; $display("A10xz=%b",A10xz," A01010101=%b",A01010101); $display("A1=%0d",A1," A2=%0d",A2," A4=%0d",A4); $display("B1=%b",B1," B0=%b",B0," A00x=%b",A00x); $display("C1=%b",C1," Ax=%b",Ax," Bx=%b",Bx); $display("D0=%b",D0," D1=%b",D1); $display("E0=%b",E0," E1=%b",E1," F1=%b",F1); $display("A00=%b",A00," G1=%b",G1," H0=%b",H0); $display("J01x=%b",J01x); end endmodule __________________________________________________________________________ module modulo; reg [2:0] Seven; initial begin #1 Seven = 7; #1 $display("Before=", Seven); #1 Seven = Seven + 1; #1 $display("After =", Seven); end endmodule Before=7 After =0 __________________________________________________________________________ module LRM_arithmetic; integer IA, IB, IC, ID, IE; reg [15:0] RA, RB, RC; initial begin IA = -4'd12; RA = IA / 3; RB = -4'd12; IB = RB / 3; IC = -4'd12 / 3; RC = -12 / 3; ID = -12 / 3; IE = IA / 3; end initial begin #1; $display(" hex default"); $display("IA = -4'd12 = %h%d",IA,IA); $display("RA = IA / 3 = %h %d",RA,RA); $display("RB = -4'd12 = %h %d",RB,RB); $display("IB = RB / 3 = %h%d",IB,IB); $display("IC = -4'd12 / 3 = %h%d",IC,IC); $display("RC = -12 / 3 = %h %d",RC,RC); $display("ID = -12 / 3 = %h%d",ID,ID); $display("IE = IA / 3 = %h%d",IE,IE); end endmodule __________________________________________________________________________ module holiday_1(sat, sun, weekend); input sat, sun; output weekend; assign weekend = sat | sun; endmodule __________________________________________________________________________ `timescale 100s/1s // units are 100 seconds with precision of 1s module life; wire [3:0] n; integer days; wire wake_7am, wake_8am; // wake at 7 on weekdays else at 8 assign n = 1 + (days % 7); // n is day of the week (1-6) always@(wake_8am or wake_7am) $display("Day=",n," hours=%0d ",($time/36)%24," 8am = ", wake_8am," 7am = ",wake_7am," m2.weekday = ", m2.weekday); initial days = 0; initial begin #(24*36*10);$finish; end // run for 10 days always #(24*36) days = days + 1; // bump day every 24hrs rest m1(n, wake_8am); // module instantiation // creates a copy of module rest with instance name m1 // ports are linked using positional notation work m2(.weekday(wake_7am), .day(n)); // creates a copy of module work with instance name m2 // ports are linked using named association endmodule module rest(day, weekend); // module definition // notice the port names are different from parent input [3:0] day; output weekend; reg weekend; always begin #36 weekend = day > 5; end // need delay endmodule module work(day, weekday); input [3:0] day; output weekday; reg weekday; always begin #36 weekday = day < 6; end // need delay endmodule __________________________________________________________________________ module holiday_1(sat, sun, weekend); input sat, sun; output weekend; assign weekend = sat | sun; // outside a procedure endmodule __________________________________________________________________________ module holiday_2(sat, sun, weekend); input sat, sun; output weekend; reg weekend; always #1 weekend = sat | sun; // inside a procedure endmodule __________________________________________________________________________ module assignment_1(); wire pwr_good,pwr_on,pwr_stable; reg Ok,Fire; assign pwr_stable = Ok&(!Fire); assign pwr_on = 1; assign pwr_good = pwr_on & pwr_stable; initial begin Ok=0;Fire=0; #1 Ok=1; #5 Fire=1;end initial begin $monitor("TIME=%0d",$time," ON=",pwr_on, " STABLE=", pwr_stable," OK=",Ok," FIRE=",Fire," GOOD=",pwr_good); #10 $finish; end endmodule __________________________________________________________________________ module assignment_2; reg Enable; wire [31:0] Data; /* the following single statement is equivalent to a declaration and continu ous assignment */ wire [31:0] DataBus = Enable ? Data : 32'bz; assign Data = 32'b10101101101011101111000010100001; initial begin $monitor("Enable=%b DataBus=%b ", Enable, DataBus); Enable = 0; #1; Enable = 1; #1; end endmodule __________________________________________________________________________ module always_1; reg Y, Clk; always // statements in an always statement execute repeatedly... begin: my_block // start of sequential block @(posedge Clk) #5 Y = 1; // at +ve edge set Y=1 @(posedge Clk) #5 Y = 0; // at the NEXT +ve edge set Y=0 end // end of sequential block always #10 Clk = ~ Clk; // ...we need a clock initial Y = 0; // these initial statements execu te initial Clk = 0; // only once, but first... initial $monitor("T=%2g",$time," Clk=",Clk," Y=",Y); initial #70 $finish; endmodule __________________________________________________________________________ module procedural_assign; reg Y, A; always @(A) Y = A; // procedural assignment initial begin A=0; #5; A=1; #5; A=0; #5; $finish; end initial $monitor("T=%2g",$time,,"A=",A,,,"Y=",Y); endmodule __________________________________________________________________________ module delay_controls; reg X,Y,Clk,Dummy; always #1 Dummy=!Dummy; // dummy clock, just for graphics // examples of delay controls... always begin #25 X=1;#10 X=0;#5; end // an event control: always @(posedge Clk) Y=X; // wait for +ve clock edge always #10 Clk = !Clk; // the real clock initial begin Clk = 0; $display("T Clk X Y"); $monitor("%2g",$time,,,Clk,,,,X,,Y); $dumpvars;#100 $finish; end endmodule __________________________________________________________________________ module show_event; reg clock; event event_1, event_2; // declare two named events always @(posedge clock) -> event_1; // trigger event_1 always @ event_1 begin $display("Strike 1!!"); -> event_2; end // trigger event_2 always @ event_2 begin $display("Strike 2!!"); $finish; end // stop on detection of event_2 always #10 clock = ~ clock; // we need a clock initial clock = 0; endmodule __________________________________________________________________________ module data_slip_1 (); reg Clk,D,Q1,Q2; /************* bad sequential logic below ***************/ always @(posedge Clk) Q1 = D; always @(posedge Clk) Q2 = Q1; // data slips here! /************* bad sequential logic above ***************/ initial begin Clk=0; D=1; end always #50 Clk=~Clk; initial begin $display("t Clk D Q1 Q2"); $monitor("%3g",$time,,Clk,,,,D,,Q1,,,Q2); end initial #400 $finish; // run for 8 cycles initial $dumpvars; endmodule __________________________________________________________________________ module test_dff_wait; reg D,Clock,Reset; dff_wait u1(D,Q,Clock,Reset); initial begin D=1;Clock=0;Reset=1'b1;#15 Reset=1'b0;#20 D=0;end always #10 Clock=!Clock; initial begin $display("T Clk D Q Reset"); $monitor("%2g",$time,,Clock,,,,D,,Q,,Reset); #50 $finish; end endmodule module dff_wait(D,Q,Clock,Reset); output Q; input D,Clock,Reset; reg Q; wire D; always @(posedge Clock) if (Reset!==1) Q=D; always begin wait (Reset==1) Q=0; wait (Reset!==1); end endmodule __________________________________________________________________________ module dff_wait(D,Q,Clock,Reset); output Q; input D,Clock,Reset; reg Q; wire D; always @(posedge Clock) if (Reset!==1) Q=D; // we need another wait statement here or we shall spin forever always begin wait (Reset==1) Q=0; end endmodule __________________________________________________________________________ module delay; reg a,b,c,d,e,f,g,bds,bsd; initial begin a = 1; b = 0; // no delay #1 b = 1; // delayed assignment c = #1 1; // intra-assignment delay #1; // d = 1; // e <= #1 1; // intra-assignment, non-blocking #1 f <= 1; // delayed non-blocking g <= 1; // non-blocking end initial begin #1 bds = b; end // delay then sample (ds) initial begin bsd = #1 b; end // sample then delay (sd) initial begin $display("t a b c d e f g bds bsd"); $monitor("%g",$time,,a,,b,,c,,d,,e,,f,,g,,bds,,,,bsd); end endmodule __________________________________________________________________________ module dff_procedural_assign; reg d,clr_,pre_,clk; wire q; dff_clr_pre dff_1(q,d,clr_,pre_,clk); always #10 clk = ~clk; initial begin clk = 0; clr_ = 1; pre_ = 1; d = 1; #20; d = 0; #20; pre_ = 0; #20; pre_ = 1; #20; clr_ = 0; #20; clr_ = 1; #20; d = 1; #20; $finish; end initial begin $display("T CLK PRE_ CLR_ D Q"); $monitor("%3g",$time,,,clk,,,,pre_,,,,clr_,,,,d,,q); end endmodule module dff_clr_pre(q,d,clear_,preset_,clock); output q; input d,clear_,preset_,clock; reg q; always @(clear_ or preset_) if (!clear_) assign q = 0; // active low clear else if(!preset_) assign q = 1; // active low preset else deassign q; always @(posedge clock) q = d; endmodule __________________________________________________________________________ module F_subset_decode; reg [2:0]A,B,C,D,E,F; initial begin A=1;B=0;D=2;E=3; C=subset_decode(A,B); F=subset_decode(D,E); $display("A B C D E F");$display(A,,B,,C,,D,,E,,F); end function [2:0] subset_decode; input [2:0] a,b; begin if (a<=b) subset_decode=a; else subset_decode=b; end endfunction endmodule __________________________________________________________________________ module test_mux; reg a,b,select; wire out; mux mux_1(a,b,out,select); initial begin #2; select = 0; a = 0; b = 1; #2; select = 1'bx; #2; select = 1'bz; #2; select = 1; end initial $monitor("T=%2g",$time," Select=",select," Out=",out); initial #10 $finish; endmodule module mux(a, b, mux_output, mux_select); input a, b, mux_select; output mux_output; reg mux_output; always begin case(mux_select) 0: mux_output = a; 1: mux_output = b; default mux_output = 1'bx; // if select = x or z set output to x endcase #1; // need some delay, otherwise we'll spin forever end endmodule __________________________________________________________________________ module loop_1; integer i; reg [31:0] DataBus; initial DataBus = 0; initial begin /************** insert loop code after here ******************/ /* for(execute this once before starting loop; exit loop if thi s is false; execute this at end of loop before the ch eck for end of loop) */ for(i=0; i<=15; i=i+1) DataBus[i]=1; /*************** insert loop code before here ****************/ end initial begin $display("DataBus = %b",DataBus); #2; $display("DataBus = %b",DataBus); $finish; end endmodule __________________________________________________________________________ module fork event a,b; initial fork @eat_breakfast; @read_paper; join end endmodule __________________________________________________________________________ module primitive; nand (strong0, strong1) #2.2 Nand_1(n001, n004, n005), Nand_2(n003, n001, n005, n002); nand (n006, n005, n002); endmodule __________________________________________________________________________ primitive Adder(Sum, InA, InB); output Sum; input Ina, InB; table // inputs : output 00 : 0; 01 : 1; 10 : 1; 11 : 0; endtable endprimitive __________________________________________________________________________ primitive DLatch(Q, Clock, Data); output Q; reg Q; input Clock, Data; table //inputs : present state : output (next state) 1 0 : ? : 0; // ? represents 0,1, or x input 1 1 : b : 1; // b represents 0 or 1 input 1 1 : x : 1; // could have combined this with previous line // The following line is as it appeared in printing 1 and 2. // 0 1 : ? : -; // - represents no change in an output // Changed as follows by Mike Smith, 10/11/97, for printing 3. 0 ? : ? : -; // - represents no change in an output // // Explanation: I had never intended that this example to be // a complete and correct model of a latch, it was meant only // to illustrate UDP truth-table declaration. However, the // problem with the original code (a missing truth-table // specification for the case Clock=0 and Data equal to anything // other than 1) looks like an error. It could cause confusion // if someone was either (a) trying to figure out how this // state-dependent UDP modeled a latch or (b) just blindly // copied the code from the book text and used it. // So, I have changed it. // endtable endprimitive __________________________________________________________________________ primitive DFlipFlop(Q, Clock, Data); output Q; reg Q; input Clock, Data; table //inputs : present state : output (next state) r 0 : ? : 0 ; // rising edge, next state = output = 0 r 1 : ? : 1 ; // rising edge, next state = output = 1 (0x) 0 : 0 : 0 ; // rising edge, next state = output = 0 (0x) 1 : 1 : 1 ; // rising edge, next state = output = 1 (?0) ? : ? : - ; // falling edge, no change in output ? (??) : ? : - ; // no clock edge, no change in output endtable endprimitive __________________________________________________________________________ module DFF_Spec; reg D, clk; DFF_Part DFF1 (Q, clk, D, pre, clr); initial begin D = 0; clk = 0; #1; clk = 1; end initial $monitor("T=%2g",$time," clk=",clk," Q=",Q); endmodule module DFF_Part(Q, clk, D, pre, clr); input clk, D, pre, clr; output Q; DFlipFlop(Q, clk, D); // no preset or clear in this UDP specify specparam tPLH_clk_Q = 3, tPHL_clk_Q = 2.9, tPLH_set_Q = 1.2, tPHL_set_Q = 1.1; (clk => Q) = (tPLH_clk_Q, tPHL_clk_Q); (pre, clr *> Q) = (tPLH_set_Q, tPHL_set_Q); endspecify endmodule __________________________________________________________________________ `timescale 1 ns / 100 fs module M_Spec; reg A1, A2, B; M M1 (Z, A1, A2, B); initial begin A1=0;A2=1;B=1;#5;B=0;#5;A1=1;A2=0;B=1;#5;B=0;end initial $monitor("T=%4g",$realtime," A1=",A1," A2=",A2," B=",B," Z=",Z); endmodule `timescale 100 ps / 10 fs module M(Z, A1, A2, B); input A1, A2, B; output Z; or (Z1, A1, A2); nand (Z, Z1, B); // OAI21 /*A1 A2 B Z delay=10*100 ps unless shown below... 0 0 0 1 0 0 1 1 0 1 0 1 B:0->1 Z:1->0 delay=t2 0 1 1 0 B:1->0 Z:0->1 delay=t1 1 0 0 1 B:0->1 Z:1->0 delay=t4 1 0 1 0 B:1->0 Z:0->1 delay=t3 1 1 0 1 1 1 1 0 */ specify specparam t1=11,t2=12; specparam t3=13,t4=14; (A1 => Z) = 10; (A2 => Z) = 10; if (~A1) (B => Z) = (t1, t2); if (A1) (B => Z) = (t3, t4); endspecify endmodule __________________________________________________________________________ module Vector_And(Z,A,B); parameter CARDINALITY = 1; input [CARDINALITY-1:0] A,B; output [CARDINALITY-1:0] Z; wire [CARDINALITY-1:0] Z = A & B; endmodule __________________________________________________________________________ module Four_And_Gates(OutBus, InBusA, InBusB); input [3:0] InBusA, InBusB; output [3:0] OutBus; Vector_And #(4) My_AND(OutBus, InBusA, InBusB); // 4 AND gates endmodule __________________________________________________________________________ module And_Gates(OutBus, InBusA, InBusB); parameter WIDTH = 1; input [WIDTH-1:0] InBusA, InBusB; output [WIDTH-1:0] OutBus; Vector_And #(WIDTH) My_And(OutBus, InBusA, InBusB); endmodule module Super_Size; defparam And_Gates.WIDTH = 4; endmodule __________________________________________________________________________ /******************************************************/ /* module viterbi_encode */ /******************************************************/ /* This is the encoder. X2N (msb) and X1N form the 2-bit input message, XN. Example: if X2N=1, X1N=0, then XN=2. Y2N (msb), Y1N, and Y0N form the 3-bit encoded signal, YN (for a total constellation of 8 PSK signals that will be transmitted). The encoder uses a state machine with four states to generate the 3-bit output, YN, from the 2-bit input, XN. Example: the repeated input sequence XN = (X2N, X1N) = 0, 1, 2, 3 produces the repeated output sequence YN = (Y2N, Y1N, Y0N) = 1, 0, 5, 4. */ module viterbi_encode(X2N,X1N,Y2N,Y1N,Y0N,clk,res); input X2N,X1N,clk,res; output Y2N,Y1N,Y0N; wire X1N_1,X1N_2,Y2N,Y1N,Y0N; dff dff_1(X1N,X1N_1,clk,res); dff dff_2(X1N_1,X1N_2,clk,res); assign Y2N=X2N; assign Y1N=X1N ^ X1N_2; assign Y0N=X1N_1; endmodule __________________________________________________________________________ /******************************************************/ /* module viterbi_distances */ /******************************************************/ /* This module simulates the front-end of a receiver. Normally the received analog signal (with noise) is converted into a series of distance measures from the known eight possible transmitted PSK signals: s1,...s7. We are not simulating the analog part or noise in this version so we just take the digitally encoded 3-bit signal, Y, from the encoder and convert it directly to the distance measures. d[N] is the distance from signal=N to signal=0 d[N] = (2*sin(N*PI/8))**2 in 3-bit binary (on the scale 2=100) Example: d[3] = 1.85**2 = 3.41 = 110 inN is the distance from signal=N to encoder signal. Example: in3 is the distance from signal=3 to encoder signal. d[N] is the distance from signal=N to encoder signal=0. If encoder signal=J, shift the distances by 8-J positions. Example: if signal=2, in0 is d[6], in1 is D[7], in2 is D[0], etc. */ module viterbi_distances (Y2N,Y1N,Y0N,clk,res,in0,in1,in2,in3,in4,in5,in6,in7); input clk,res,Y2N,Y1N,Y0N; output in0,in1,in2,in3,in4,in5,in6,in7; reg [2:0] J,in0,in1,in2,in3,in4,in5,in6,in7; reg [2:0] d [7:0]; initial begin d[0]='b000;d[1]='b001;d[2]='b100;d[3]='b110; d[4]='b111;d[5]='b110;d[6]='b100;d[7]='b001; end always @(Y2N or Y1N or Y0N) begin J[0]=Y0N;J[1]=Y1N;J[2]=Y2N; J=8-J;in0=d[J];J=J+1;in1=d[J];J=J+1;in2=d[J];J=J+1;in3=d[J]; J=J+1;in4=d[J];J=J+1;in5=d[J];J=J+1;in6=d[J];J=J+1;in7=d[J]; end endmodule __________________________________________________________________________ /*****************************************************/ /* module viterbi_test_CDD */ /*****************************************************/ /* This is the top level module, viterbi_test_CDD, that models the communications link. It contains three modules: viterbi_encode, viterbi_distances, and viterbi. There is no analog and no noise in this version. The 2-bit message, X, is encoded to a 3-bit signal, Y. In this module the message X is generated using a simple counter. The digital 3-bit signal Y is transmitted, received with noise as an analog signal (not modeled here), and converted to a set of eight 3-bit distance measures, in0, ..., in7. The distance measures form the input to the Viterbi decoder that reconstructs the transmitted signal Y, with an error signal if the measures are inconsistent. CDD = counter input, digital transmission, digital reception */ module viterbi_test_CDD; wire Error; // decoder out wire [2:0] Y,Out; // encoder out, decoder out reg [1:0] X; // encoder inputs reg Clk, Res; // clock and reset wire [2:0] in0,in1,in2,in3,in4,in5,in6,in7; always #500 $display("t Clk X Y Out Error"); initial $monitor("%4g",$time,,Clk,,,,X,,Y,,Out,,,,Error); initial $dumpvars; initial #3000 $finish; always #50 Clk=~Clk; initial begin Clk=0; X=3; // no special reason to start at 3 #60 Res=1;#10 Res=0;end // hit reset after inputs are stable always @(posedge Clk) #1 X=X+1; // drive input with counter viterbi_encode v_1 (X[1],X[0],Y[2],Y[1],Y[0],Clk,Res); viterbi_distances v_2 (Y[2],Y[1],Y[0],Clk,Res,in0,in1,in2,in3,in4,in5,in6,in7); viterbi v_3 (in0,in1,in2,in3,in4,in5,in6,in7,Out,Clk,Res,Error); endmodule __________________________________________________________________________ /******************************************************/ /* module dff */ /******************************************************/ /* A D flip-flop module. */ module dff(D,Q,Clock,Reset); // N.B. reset is active-low output Q; input D,Clock,Reset; parameter CARDINALITY = 1; reg [CARDINALITY-1:0] Q; wire [CARDINALITY-1:0] D; always @(posedge Clock) if (Reset!==0) #1 Q=D; always begin wait (Reset==0); Q=0; wait (Reset==1); end endmodule __________________________________________________________________________ /* Verilog code for a Viterbi decoder. The decoder assumes a rate 2/3 encoder, 8 PSK modulation, and trellis coding. The viterbi module contains eight submodules: subset_decode, metric, compute_metric, compare_select, reduce, pathin, path_memory, and output_decision. The decoder accepts eight 3-bit measures of ||r-si||**2 and, after an initial delay of twelve clock cycles, the output is the best estimate of the signal transmitted. The distance measures are the Euclidean distances between the received signal r (with noise) and each of the (in this case eight) possible transmitted signals s0-s7. Original by Christeen Gray, University of Hawaii. Heavily modified by MJSS, any errors are mine. Use freely. */ /******************************************************/ /* module viterbi */ /******************************************************/ /* This is the top level of the Viterbi decoder. The eight input signals {in0,...,in7} represent the distance measures, ||r-si||**2. The other input signals are clk and reset. The output signals are out and error. */ module viterbi (in0,in1,in2,in3,in4,in5,in6,in7, out,clk,reset,error); input [2:0] in0,in1,in2,in3,in4,in5,in6,in7; output [2:0] out; input clk,reset; output error; wire sout0,sout1,sout2,sout3; wire [2:0] s0,s1,s2,s3; wire [4:0] m_in0,m_in1,m_in2,m_in3; wire [4:0] m_out0,m_out1,m_out2,m_out3; wire [4:0] p0_0,p2_0,p0_1,p2_1,p1_2,p3_2,p1_3,p3_3; wire ACS0,ACS1,ACS2,ACS3; wire [4:0] out0,out1,out2,out3; wire [1:0] control; wire [2:0] p0,p1,p2,p3; wire [11:0] path0; subset_decode u1(in0,in1,in2,in3,in4,in5,in6,in7, s0,s1,s2,s3,sout0,sout1,sout2,sout3,clk,reset); metric u2(m_in0,m_in1,m_in2,m_in3,m_out0, m_out1,m_out2,m_out3,clk,reset); compute_metric u3(m_out0,m_out1,m_out2,m_out3,s0,s1,s2,s3, p0_0,p2_0,p0_1,p2_1,p1_2,p3_2,p1_3,p3_3,error); compare_select u4(p0_0,p2_0,p0_1,p2_1,p1_2,p3_2,p1_3,p3_3, out0,out1,out2,out3,ACS0,ACS1,ACS2,ACS3); reduce u5(out0,out1,out2,out3, m_in0,m_in1,m_in2,m_in3,control); pathin u6(sout0,sout1,sout2,sout3, ACS0,ACS1,ACS2,ACS3,path0,clk,reset); path_memory u7(p0,p1,p2,p3,path0,clk,reset, ACS0,ACS1,ACS2,ACS3); output_decision u8(p0,p1,p2,p3,control,out); endmodule /******************************************************/ /* module subset_decode */ /******************************************************/ /* This module chooses the signal corresponding to the smallest of each set {||r-s0||**2,||r-s4||**2}, {||r-s1||**2, ||r-s5||**2}, {||r-s2||**2,||r-s6||**2}, {||r-s3||**2,||r-s7||**2}. Therefore there are eight input signals and four output signals for the distance measures. The signals sout0, ..., sout3 are used to control the path memory. The statement dff #(3) instantiates a vector array of 3 D flip-flops. */ module subset_decode (in0,in1,in2,in3,in4,in5,in6,in7, s0,s1,s2,s3, sout0,sout1,sout2,sout3, clk,reset); input [2:0] in0,in1,in2,in3,in4,in5,in6,in7; output [2:0] s0,s1,s2,s3; output sout0,sout1,sout2,sout3; input clk,reset; wire [2:0] sub0,sub1,sub2,sub3,sub4,sub5,sub6,sub7; dff #(3) subout0(in0, sub0, clk, reset); dff #(3) subout1(in1, sub1, clk, reset); dff #(3) subout2(in2, sub2, clk, reset); dff #(3) subout3(in3, sub3, clk, reset); dff #(3) subout4(in4, sub4, clk, reset); dff #(3) subout5(in5, sub5, clk, reset); dff #(3) subout6(in6, sub6, clk, reset); dff #(3) subout7(in7, sub7, clk, reset); function [2:0] subset_decode; input [2:0] a,b; begin subset_decode = 0; if (a<=b) subset_decode = a; else subset_decode = b; end endfunction function set_control; input [2:0] a,b; begin if (a<=b) set_control = 0; else set_control = 1; end endfunction assign s0 = subset_decode (sub0,sub4); assign s1 = subset_decode (sub1,sub5); assign s2 = subset_decode (sub2,sub6); assign s3 = subset_decode (sub3,sub7); assign sout0 = set_control(sub0,sub4); assign sout1 = set_control(sub1,sub5); assign sout2 = set_control(sub2,sub6); assign sout3 = set_control(sub3,sub7); endmodule /******************************************************/ /* module compute_metric */ /******************************************************/ /* This module computes the sum of path memory and the distance for each path entering a state of the trellis. For the four states, there are two paths entering it, therefore eight sums are computed in this module. The path metrics and output sums are 5-bits wide. The output sum is bounded and should never be greater than 5-bits for a valid input signal. The overflow from the sum is the error output and indicates an invalid input signal.*/ module compute_metric (m_out0,m_out1,m_out2,m_out3, s0,s1,s2,s3,p0_0,p2_0, p0_1,p2_1,p1_2,p3_2,p1_3,p3_3, error); input [4:0] m_out0,m_out1,m_out2,m_out3; input [2:0] s0,s1,s2,s3; output [4:0] p0_0,p2_0,p0_1,p2_1,p1_2,p3_2,p1_3,p3_3; output error; assign p0_0 = m_out0 + s0, p2_0 = m_out2 + s2, p0_1 = m_out0 + s2, p2_1 = m_out2 + s0, p1_2 = m_out1 + s1, p3_2 = m_out3 + s3, p1_3 = m_out1 + s3, p3_3 = m_out3 + s1; function is_error; input x1,x2,x3,x4,x5,x6,x7,x8; begin if (x1||x2||x3||x4||x5||x6||x7||x8) is_error = 1; else is_error = 0; end endfunction assign error = is_error(p0_0[4],p2_0[4],p0_1[4],p2_1[4], p1_2[4],p3_2[4],p1_3[4],p3_3[4]); endmodule /******************************************************/ /* module compare_select */ /******************************************************/ /* This module compares the summations from the compute_metric module and selects the metric and path with the lowest value. The output of this module is saved as the new path metric for each state. The ACS output signals are used to control the path memory of the decoder. */ module compare_select (p0_0,p2_0,p0_1,p2_1,p1_2,p3_2,p1_3,p3_3, out0,out1,out2,out3, ACS0,ACS1,ACS2,ACS3); input [4:0] p0_0,p2_0,p0_1,p2_1,p1_2,p3_2,p1_3,p3_3; output [4:0] out0,out1,out2,out3; output ACS0,ACS1,ACS2,ACS3; function [4:0] find_min_metric; input [4:0] a,b; begin if (a<=b) find_min_metric=a; else find_min_metric=b; end endfunction function set_control; input [4:0] a,b; begin if (a<=b) set_control=0; else set_control=1; end endfunction assign out0=find_min_metric(p0_0,p2_0); assign out1=find_min_metric(p0_1,p2_1); assign out2=find_min_metric(p1_2,p3_2); assign out3=find_min_metric(p1_3,p3_3); assign ACS0 = set_control (p0_0,p2_0); assign ACS1 = set_control (p0_1,p2_1); assign ACS2 = set_control (p1_2,p3_2); assign ACS3 = set_control (p1_3,p3_3); endmodule /******************************************************/ /* module path */ /******************************************************/ /* This is the basic unit for the path memory of the Viterbi decoder. It consists of four 3-bit D flip-flops in parallel. There is a 2:1 mux at each D flip-flop input. The statement dff #(12) instantiates a vector array of 12 flip-flops. */ module path(in,out,clk,reset,ACS0,ACS1,ACS2,ACS3); input [11:0] in; output [11:0] out; input clk,reset,ACS0,ACS1,ACS2,ACS3; wire [11:0] p_in; dff #(12) path0(p_in,out,clk,reset); function [2:0] shift_path; input [2:0] a,b; input control; begin if (control == 0) shift_path = a; else shift_path = b; end endfunction assign p_in[11:9]=shift_path(in[11:9],in[5:3],ACS0); assign p_in[ 8:6]=shift_path(in[11:9],in[5:3],ACS1); assign p_in[ 5:3]=shift_path(in[8: 6],in[2:0],ACS2); assign p_in[ 2:0]=shift_path(in[8: 6],in[2:0],ACS3); endmodule /******************************************************/ /* module path_memory */ /******************************************************/ /* This module consists of an array of memory elements (D flip-flops) that store and shift the path memory as new signals are added to the four paths (or four most likely sequences of signals). This module instantiates 11 instances of the path module. */ module path_memory (p0,p1,p2,p3, path0,clk,reset, ACS0,ACS1,ACS2,ACS3); output [2:0] p0,p1,p2,p3; input [11:0] path0; input clk,reset,ACS0,ACS1,ACS2,ACS3; wire [11:0]out1,out2,out3,out4,out5,out6,out7,out8,out9,out10,out11; path x1 (path0,out1 ,clk,reset,ACS0,ACS1,ACS2,ACS3), x2 (out1, out2 ,clk,reset,ACS0,ACS1,ACS2,ACS3), x3 (out2, out3 ,clk,reset,ACS0,ACS1,ACS2,ACS3), x4 (out3, out4 ,clk,reset,ACS0,ACS1,ACS2,ACS3), x5 (out4, out5 ,clk,reset,ACS0,ACS1,ACS2,ACS3), x6 (out5, out6 ,clk,reset,ACS0,ACS1,ACS2,ACS3), x7 (out6, out7 ,clk,reset,ACS0,ACS1,ACS2,ACS3), x8 (out7, out8 ,clk,reset,ACS0,ACS1,ACS2,ACS3), x9 (out8, out9 ,clk,reset,ACS0,ACS1,ACS2,ACS3), x10(out9, out10,clk,reset,ACS0,ACS1,ACS2,ACS3), x11(out10,out11,clk,reset,ACS0,ACS1,ACS2,ACS3); assign p0=out11[11:9]; assign p1=out11[ 8:6]; assign p2=out11[ 5:3]; assign p3=out11[ 2:0]; endmodule /******************************************************/ /* module pathin */ /******************************************************/ /* This module determines the input signal to the path for each of the four paths. Control signals from the subset decoder and compare select modules are used to store the correct signal. The statement dff #(12) instantiates a vector array of 12 flip-flops. */ module pathin (sout0,sout1,sout2,sout3, ACS0,ACS1,ACS2,ACS3, path0,clk,reset); input sout0,sout1,sout2,sout3,ACS0,ACS1,ACS2,ACS3; input clk,reset; output [11:0] path0; wire [2:0] sig0,sig1,sig2,sig3; wire [11:0] path_in; dff #(12) firstpath(path_in,path0,clk,reset); function [2:0] subset0; input sout0; begin if(sout0 == 0) subset0 = 0; else subset0 = 4; end endfunction function [2:0] subset1; input sout1; begin if(sout1 == 0) subset1 = 1; else subset1 = 5; end endfunction function [2:0] subset2; input sout2; begin if(sout2 == 0) subset2 = 2; else subset2 = 6; end endfunction function [2:0] subset3; input sout3; begin if(sout3 == 0) subset3 = 3; else subset3 = 7; end endfunction function [2:0] find_path; input [2:0] a,b; input control; begin if(control==0) find_path = a; else find_path = b; end endfunction assign sig0 = subset0(sout0); assign sig1 = subset1(sout1); assign sig2 = subset2(sout2); assign sig3 = subset3(sout3); assign path_in[11:9] = find_path(sig0,sig2,ACS0); assign path_in[ 8:6] = find_path(sig2,sig0,ACS1); assign path_in[ 5:3] = find_path(sig1,sig3,ACS2); assign path_in[ 2:0] = find_path(sig3,sig1,ACS3); endmodule /******************************************************/ /* module metric */ /******************************************************/ /* The registers created in this module (using D flip-flops) store the four path metrics. Each register is 5 bits wide. The statement dff #(5) instantiates a vector array of 5 flip-flops. */ module metric (m_in0,m_in1,m_in2,m_in3, m_out0,m_out1,m_out2,m_out3, clk,reset); input [4:0] m_in0,m_in1,m_in2,m_in3; output [4:0] m_out0,m_out1,m_out2,m_out3; input clk,reset; dff #(5) metric3(m_in3, m_out3, clk, reset); dff #(5) metric2(m_in2, m_out2, clk, reset); dff #(5) metric1(m_in1, m_out1, clk, reset); dff #(5) metric0(m_in0, m_out0, clk, reset); endmodule /******************************************************/ /* module output_decision */ /******************************************************/ /* This module decides the output signal based on the path that corresponds to the smallest metric. The control signal comes from the reduce module. */ module output_decision(p0,p1,p2,p3,control,out); input [2:0] p0,p1,p2,p3; input [1:0] control; output [2:0] out; function [2:0] decide; input [2:0] p0,p1,p2,p3; input [1:0] control; begin if(control == 0) decide = p0; else if(control == 1) decide = p1; else if(control == 2) decide = p2; else decide = p3; end endfunction assign out = decide(p0,p1,p2,p3,control); endmodule /******************************************************/ /* module reduce */ /******************************************************/ /* This module reduces the metrics after the addition and compare operations. This algorithm selects the smallest metric and subtracts it from the other three metrics. */ module reduce (in0,in1,in2,in3, m_in0,m_in1,m_in2,m_in3, control); input [4:0] in0,in1,in2,in3; output [4:0] m_in0,m_in1,m_in2,m_in3; output [1:0] control; wire [4:0] smallest; function [4:0] find_smallest; input [4:0] in0,in1,in2,in3; reg [4:0] a,b; begin if(in0<=in1) a=in0; else a=in1; if(in2<=in3) b=in2; else b=in3; if(a<=b) find_smallest = a; else find_smallest = b; end endfunction function [1:0] smallest_no; input [4:0] in0,in1,in2,in3,smallest; begin if(smallest == in0) smallest_no = 0; else if (smallest == in1) smallest_no = 1; else if (smallest == in2) smallest_no = 2; else smallest_no = 3; end endfunction assign smallest = find_smallest(in0,in1,in2,in3); assign m_in0 = in0 - smallest; assign m_in1 = in1 - smallest; assign m_in2 = in2 - smallest; assign m_in3 = in3 - smallest; assign control = smallest_no(in0,in1,in2,in3,smallest); endmodule __________________________________________________________________________ module test_display; // display system tasks... initial begin $display ("string, variables, or expression"); /* format specifications work like printf in C... %d=decimal %b=binary %s=string %h=hex %o=octal %c=character %m=hierarchical name %v=strength %t=time format %e=scientific %f=decimal %g=shortest examples: %d uses default width %0d uses minimum width %7.3g uses 7 spaces with 3 digits after decimal point */ // $displayb, $displayh, $displayo print in b, h, o formats // $write, $strobe, $monitor also have b, h, o versions $write("write"); // as $display, but without newline at end of line $strobe("strobe"); // as $display, values at end of simulation cycle $monitor(v); // disp. @change of v (except v= $time,$stime,$realtime) $monitoron; $monitoroff; // toggle monitor mode on/off end endmodule __________________________________________________________________________ module file_1; integer f1, ch; initial begin f1 = $fopen("f1.out"); if(f1==0) $stop(2); if(f1==2)$display("f1 open"); ch = f1|1; $fdisplay(ch,"Hello"); $fclose(f1); end endmodule __________________________________________________________________________ module load; reg [7:0] mem[0:7]; integer i; initial begin $readmemb("mem.dat", mem, 1, 6); // start_address=1, end_address=6 for (i= 0; i<8; i=i+1) $display("mem[%0d] %b", i, mem[i]); end endmodule __________________________________________________________________________ // timescale tasks... module a; initial $printtimescale(b.c1); endmodule module b; c c1 (); endmodule `timescale 10 ns / 1 fs module c_dat; endmodule `timescale 1 ms / 1 ns module Ttime; initial $timeformat(-9, 5, " ns", 10); endmodule /* $timeformat [ ( n, p, suffix , min_field_width ) ] ; units = 1 second ** (-n), n=0->15, e.g. for n=9, units = ns p = digits after decimal point for %t e.g. p=5 gives 0.00000 suffix for %t (despite timescale directive) min_field_width is number of character positions for %t */ __________________________________________________________________________ module test_simulation_control; // simulation control system tasks... initial begin $stop; // enter interactive mode (default parameter 1) $finish(2); // graceful exit with optional parameter as follows... // 0=nothing 1=time and location 2=time, location, and statistics end endmodule __________________________________________________________________________ module timing_checks (data, clock, clock_1,clock_2); input data,clock,clock_1,clock_2;reg tSU,tH,tHIGH,tP,tSK,tR; specify // timing check system tasks... /* $setup (data_event, reference_event, limit [, notifier]); violation = (T_reference_event)-(T_data_event) < limit */ $setup(data, posedge clock, tSU); /* $hold (reference_event, data_event, limit [, notifier]); violation = (time_of_data_event)-(time_of_reference_event) < limit */ $hold(posedge clock, data, tH); /* $setuphold (reference_event, data_event, setup_limit, hold_limit [, notifier]); parameter_restriction = setup_limit + hold_limit > 0 */ $setuphold(posedge clock, data, tSU, tH); /* $width (reference_event, limit, threshold [, notifier]); violation = threshold < (T_data_event) - (T_reference_event) < limit reference_event = edge data_event = opposite_edge_of_reference_event */ $width(posedge clock, tHIGH); /* $period (reference_event, limit [, notifier]); violation = (T_data_event) - (T_reference_event) < limit reference_event = edge data_event = same_edge_of_reference event */ $period(posedge clock, tP); /* $skew (reference_event, data_event, limit [, notifier]); violation = (T_data_event) - (T_reference_event) > limit */ $skew(posedge clock_1, posedge clock_2, tSK); /* $recovery (reference_event, data_event, limit, [, notifier]); violation = (T_data_event) - (T_reference_event) < limit */ $recovery(posedge clock, posedge clock_2, tR); /* $nochange (reference_event, data_event, start_edge_offset, end_edge_offset [, notifier]); reference_event = posedge | negedge violation = change while reference high (posedge)/low (negedge) +ve start_edge_offset moves start of window later +ve end_edge_offset moves end of window later */ $nochange (posedge clock, data, 0, 0); endspecify endmodule __________________________________________________________________________ primitive dff_udp(q, clock, data, notifier); output q; reg q; input clock, data, notifier; table //clock data notifier:state:q r 0 ? : ? :0 ; r 1 ? : ? :1 ; n ? ? : ? :- ; ? * ? : ? :- ; ? ? * : ? :x ; endtable // ...notifier endprimitive `timescale 100 fs / 1 fs module dff(q, clock, data);output q; input clock, data; reg notifier; dff_udp(q1, clock, data, notifier); buf(q, q1); specify specparam tSU = 5, tH = 1, tPW = 20, tPLH = 4:5:6, tPHL = 4:5:6; (clock *> q) = (tPLH, tPHL); $setup(data, posedge clock, tSU, notifier); // setup: data to clock $hold(posedge clock, data, tH, notifier); // hold: clock to data $period(posedge clock, tPW, notifier); // clock: period endspecify endmodule __________________________________________________________________________ module pla_1 (a1,a2,a3,a4,a5,a6,a7,b1,b2,b3); input a1, a2, a3, a4, a5, a6, a7 ; output b1, b2, b3; reg [1:7] mem[1:3]; reg b1, b2, b3; initial begin $readmemb("array.dat", mem); #1; b1=1; b2=1; b3=1; $async$and$array(mem,{a1,a2,a3,a4,a5,a6,a7},{b1,b2,b3}); end initial $monitor("%4g",$time,,b1,,b2,,b3); endmodule __________________________________________________________________________ module pla_2; reg [1:3] a, mem[1:4]; reg [1:4] b; initial begin $async$and$plane(mem,{a[1],a[2],a[3]},{b[1],b[2],b[3],b[4]}); mem[1] = 3'b10?; mem[2] = 3'b??1; mem[3] = 3'b0?0; mem[4] = 3'b???; #10 a = 3'b111; #10 $displayb(a, " -> ", b); #10 a = 3'b000; #10 $displayb(a, " -> ", b); #10 a = 3'bxxx; #10 $displayb(a, " -> ", b); #10 a = 3'b101; #10 $displayb(a, " -> ", b); end endmodule __________________________________________________________________________ module stochastic; initial begin // stochastic analysis system tasks... /* $q_initialize (q_id, q_type, max_length, status) ; q_id is an integer that uniquely identifies the queue q_type 1=FIFO 2=LIFO max_length is an integer defining the maximum number of entries */ $q_initialize (q_id, q_type, max_length, status) ; /* $q_add (q_id, job_id, inform_id, status) ; job_id=integer input inform_id= user-defined integer input for queue entry */ $q_add (q_id, job_id, inform_id, status) ; /* $q_remove (q_id, job_id, inform_id, status) ; */ $q_remove (q_id, job_id, inform_id, status) ; /* $q_full (q_id, status) ; status = 0 = queue is not full, status = 1 = queue full */ $q_full (q_id, status) ; /* $q_exam (q_id, q_stat_code, q_stat_value, status) ; q_stat_code is input request as follows... 1=current queue length 2=mean inter-arrival time 3=max. queue length 4=shortest wait time ever 5=longest wait time for jobs still in queue 6=ave. wait time in queue q_stat_value is output containing requested value */ $q_exam (q_id, q_stat_code, q_stat_value, status) ; end endmodule __________________________________________________________________________ module test_time;initial begin // simulation time system functions... $time ; // returns 64-bit integer scaled to timescale unit of invoking module $stime ; // returns 32-bit integer scaled to timescale unit of invoking module $realtime ; // returns real scaled to timescale unit of invoking module end endmodule __________________________________________________________________________ module test_convert; // conversion functions for reals... integer i; real r; reg [63:0] bits; initial begin #1 r=256;#1 i = $rtoi(r); #1; r = $itor(2*i) ; #1 bits = $realtobits(2.0*r) ; #1; r = $bitstoreal(bits) ; end initial $monitor("%3f",$time,,i,,r,,bits); /* $rtoi converts reals to integers w/truncation e.g. 123.45 -> 123 $itor converts integers to reals e.g. 123 -> 123.0 $realtobits converts reals to 64-bit vector $bitstoreal converts bit pattern to real ...real numbers in these functions conform to IEEE 754. Conversion rounds to the nearest valid number. */ endmodule __________________________________________________________________________ module test_real;wire [63:0]a;driver d (a);receiver r (a); initial $monitor("%3g",$time,,a,,d.r1,,r.r2); endmodule module driver (real_net); output real_net; real r1; wire [64:1] real_net = $realtobits(r1); initial #1 r1 = 123.456; endmodule module receiver (real_net); input real_net; wire [64:1] real_net; real r2; initial assign r2 = $bitstoreal(real_net); endmodule __________________________________________________________________________ module probability; // probability distribution functions... /* $random [ ( seed ) ] returns random 32-bit signed integer seed = register, integer, or time */ reg [23:0] r1,r2; integer r3,r4,r5,r6,r7,r8,r9; integer seed, start, \end , mean, standard_deviation; integer degree_of_freedom, k_stage; initial begin seed=1; start=0; \end =6; mean=5; standard_deviation=2; degree_of_freedom=2; k_stage=1; #1; r1 = $random % 60; // random -59 to 59 r2 = {$random} % 60; // positive value 0-59 r3=$dist_uniform (seed, start, \end ) ; r4=$dist_normal (seed, mean, standard_deviation) ; r5=$dist_exponential (seed, mean) ; r6=$dist_poisson (seed, mean) ; r7=$dist_chi_square (seed, degree_of_freedom) ; r8=$dist_t (seed, degree_of_freedom) ; r9=$dist_erlang (seed, k_stage, mean) ;end initial #2 $display ("%3f",$time,,r1,,r2,,r3,,r4,,r5); initial begin #3; $display ("%3f",$time,,r6,,r7,,r8,,r9); end /* All parameters are integer values. Each function returns a pseudo-random number e.g. $dist_uniform returns uniformly distributed random numbers mean, degree_of_freedom, k_stage (exponential, poisson, chi-square, t, erlang) > 0. seed = inout integer initialized by user, updated by function start, end ($dist_uniform) = integer bounding return values */ endmodule __________________________________________________________________________ Spell-checked by MJSS on Last modified by MJSS on 01/02/98