
Video  CODEC  Design 

13.1 INTRODUCTION 

In this  chapter we bring  together  some of the  concepts  discussed  earlier and examine  the 
issues  faced by designers of video CODECs and systems that interface to video  CODECs. 
Key issues  include  interfacing  (the  format of the  input and output  data,  controlling  the 
operation of the CODEC),  performance  (frame  rate,  compression,  quality),  resource usage 
(computational  resources,  chip  area) and design  time.  This  last  issue  is  important  because of 
the  fast  pace of change in the  market for multimedia  communication  systems. A short  time-to- 
market is  critical  for video coding  applications and we discuss methods of streamlining the 
design flow. We present design strategies  for two types of video  CODEC,  a  software 
implementation  (suitable  for  a  general-purpose  processor) and a  hardware  implementation 
(for FPGA or  ASIC). 

13.2 VIDEO  CODEC  INTERFACE 

Figure 13.1 shows the main interfaces  to  a  video  encoder and video  decoder: 

Encoder  input:  frames of uncompressed video (from  a  frame  grabber or other  source); 
control  parameters. 

Encoder  output:  compressed  bit  stream  (adapted  for  the  transmission  network,  see 
Chapter 11); status  parameters. 

Decoder  input:  compressed bit stream;  control  parameters. 

Decoder  output:  frames of uncompressed  video  (send  to  a  display  unit);  status 
parameters. 

A video  CODEC  is  typically  controlled by a  ‘host’  application  or  processor that deals with 
higher-level  application and protocol  issues. 

13.2.1 Video In/Out 

There  are many options  available  for the format of uncompressed  video  into the encoder or 
out of the  decoder and we list some examples here. (The  four-character  codes  listed  for 
options  (a) and (b)  are ‘FOURCC’ descriptors  originally defined as part of the AV1 video file 
format.) 
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YUY2 (4 : 2 : 2). The structure of this format is shown in Figure 13.2. A sample of  Y 
(luminance)  data is followed by a sample of Cb (blue colour difference), a second 
sample of Y, a sample of Cr (red  colour  difference),  and so on.  The result is that the 
chrominance  components  have the same vertical resolution  as  the  luminance  compo- 
nent  but half the horizontal resolution (i.e. 4 : 2 : 2 sampling as described in  Chapter 2). 
In the  example  in  the figure, the  luminance resolution is 176 x 144 and the  chromi- 
nance  resolution  is 88 x 144. 

YV12 (4 : 2 : 0) (Figure 13.3). The  luminance  samples  for  the current frame  are stored 
in  sequence,  followed by the Cr samples  and then the  Cb samples. The  Cr and Cb 
samples  have half the  horizontal  and vertical resolution of the Y samples.  Each  colour 
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... 

... 
Figure 13.2 YUY2 (4 : 2 : 2) 

pixel in the  original  image  maps  to an average of 12  bits (effectively 1 Y sample, i Cr 
sample  and  Cb  sample),  hence the name ‘W12’. Figure 13.4 shows  an  example of a 
frame stored in  this  format, with the  luminance  array first followed by the half-width 
and half-height  Cr  and  Cb arrays. 

(c)  Separate buffers for  each  component (Y, Cr, Cb). The  CODEC  is passed a pointer to the 
start of each buffer prior  to  encoding  or  decoding a frame. 

As well as  reading the source  frames (encoder) and writing the  decoded  frames  (decoder), 
both encoder and  decoder  require  to  store  one  or  more reconstructed reference  frames  for 
motion-compensated  prediction.  These  frame  stores may be  part of the  CODEC (e.g. 
internally  allocated  arrays  in a software  CODEC)  or  separate  from  the  CODEC (e.g. 
external RAM in a hardware CODEC). 

Y (frame 1) 

... Figure 13.3 W 1 2  (4 : 2 : 0) 
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i Figure 13.4 Example of W12 data 

Memory bandwidth may  be  a  particular  issue  for  large  frame  sizes  and high frame  rates. 
For  example, in order  to  encode  or  decode  video  at ‘television’ resolution (ITU-R 601, 
approximately 576 x 704 pixels per frame, 25 or  30  frames per second), the encoder  or 
decoder  video  interface  must  be  capable of transferring  216  Mbps.  The  data  transfer  rate 
may be higher if the  encoder  or  decoder  stores reconstructed frames  in  memory  external  to 
the CODEC. If forward prediction  is used, the encoder  must  transfer  data corresponding to 
three complete  frames  for  each  encoded  frame,  as  shown in Figure 13.5: reading a new input 
frame, reading a stored frame  for  motion  estimation and compensation and writing a 
reconstructed frame.  This  means that the  memory  bandwidth at the  encoder input is  at  least 
3 x 216 = 648  Mbps for  ITU-R 601 video. If two or  more  prediction  references  are used for 
motion  estimatiodcompensation  (for  example, during MPEG-2 B-picture encoding),  the 
memory  bandwidth  is  higher  still. 

13.2.2 Coded Data IdOut 

Coded  video  data  is  a  continuous sequence of bits  describing the syntax elements of coded 
video, such as  headers, transform coefficients and motion vectors. If  modified Huffman 
coding is used, the bit sequence  consists of a  series of variable-length codes  (VLCs)  packed 
together; if arithmetic  coding  is used, the bits describe  a  series of fractional  numbers  each 
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Figure 13.5 Memory access at encoder input 

representing  a  series of data  elements  (see  Chapter 8). The  sequence of bits must be mapped 
to a  suitable  data unit for  transmissiodtransport,  for  example: 

1. Bits: If the transmission  channel is capable of dealing with an arbitrary  number of bits, 
no special mapping is  required.  This may be the case  for  a  dedicated  serial  channel but is 
unlikely to be appropriate  for most network  transmission  scenarios. 

2. Bytes or words: The bit sequence  is mapped to an integral  number of bytes (8 bits)  or 
words (16 bits, 32 bits, 64  bits,  etc.).  This  is  appropriate  for many storage or transmission 
scenarios where data  is stored in multiples of a  byte.  The end of the  sequence may require 
to be padded in order to  make up an integral  number of bytes. 

3. Complete  coded  unit: Partition  the coded stream  along  boundaries that make up coded 
units within the video  syntax.  Examples of these coded units include  slices  (sections of a 
coded  picture  in MPEG-l, MPEG-2, MPEG-4  or  H.263+),  GOBS (groups of blocks, 
sections of a  coded  picture in H.261 or  H.263)  and  complete coded pictures.  The integrity 
of the coded unit  is  preserved  during  transmission,  for  example by placing  each coded 
unit in a network packet. 
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Figure 13.6 GOB locations in a frame and variable-size coded units 

Figure 13.6 shows  the  locations  of GOBS  in a  frame  coded  using  H.263iMPEG-4.  The  coded  units 
(GOBs  in  this  case)  correspond  to  regular  areas of the  original  frame:  however,  when  encoded, 
each  GOB  generates a different number of coded bits (due to variations in content within  the 
frame). The result is that  the GOBs generate  the  variable-size  coded  units  shown  in  Figure  13.6. 

An alternative is to use irregular-sized slices (e.g. using the slice structured mode in 
H.263+,  video packet mode  in  MPEG-4). Figure 13.7 shows slice boundaries that cover 
irregular numbers of macroblocks  in the original frame and are chosen such that, when 
coded,  each  slice  contains a similar number of coded bits. 

13.2.3 Control Parameters 

Some of the more  important control parameters are listed here (CODEC application 
programming interfaces [APIs] might not provide access to all of these parameters). 
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Figure  13.7 Slice boundaries in  a picture and constant-size coded units 
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Encoder 

Frame  rate May  be specified as a number of frames per second or as a proportion of 
frames to skip  during  encoding (e.g. skip every second  frame). If the  encoder  is  operating in 
a  rate-  or  computation-constrained  environment  (see  Chapter lo), then this will  be a target 
frame  rate  (rather than an absolute  rate)  that may or may not be achievable. 

Frame  size For example, a ‘standard’  frame  size (QCIF, CIF, ITU-R 601,  etc) or a non- 
standard  size. 

Target  bit  rate Required  for  encoders  operating  in a rate-controlled  environment. 

Quantiser  step  size If rate  control  is not used, a fixed quantiser  step  size may be specified: 
this will give near-constant  video  quality. 

Mode  control For  example  ‘inter’ or ‘intra’  coding mode. 

Optional  mode  selection MPEG-2, MPEG-4 and H.263  include  a  number of optional 
coding  modes (for improved  coding efficiency, improved error  resilience,  etc.). Most 
CODECs will only support a subset of these modes, and the choice of optional modes to 
use (if any) must be signalled  or  negotiated between the  encoder and the  decoder. 

Starvstop  encoding A series of video  frames. 

Decoder 

Most of the  parameters  listed  above  are  signalled to the  decoder within the coded bit stream 
itself.  For  example,  quantiser  step  size  is  signalled in frame/picture  headers and (optionally) 
macroblock  headers;  frame  rate  is  signalled by means of a timing reference in each  picture 
header; mode selection is signalled  in  the  picture  header;  and so on.  Decoder  control may be 
limited to ‘start/stop’. 

13.2.4 Status Parameters 

There  are many aspects of CODEC operation that may  be useful as status  parameters 
returned to the host application.  These may include: 

0 actual  frame  rate (may differ  from  the  target  frame  rate  in rate- or  computation- 
constrained environments); 

0 number of coded bits in each  frame; 

0 macroblock mode statistics  (e.g.  number of intrdinter-macroblocks); 

0 quantiser  step  size  for  each  macroblock  (this may be useful for  post-decoder  filtering,  see 
Chapter 9); 
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0 distribution of coded bits  (e.g.  proportion of bits allocated to coefficients, motion vector 
data,  header  data); 

0 error  indication  (returned by the  decoder when a  transmission  error has been detected, 
possibly with the estimated  location of the error in  the decoded  frame). 

13.3 DESIGN  OF A SOFTWARE  CODEC 

In this section we describe the design  goals and the main steps  required to develop  a video 
CODEC for  a  software  platform. 

13.3.1 Design Goals 

A real-time  software  video  CODEC has to operate under a  number of constraints, perhaps 
the most important of which are  computational  (determined by the  available  processing 
resources) and bit rate (determined by the  transmission or storage  medium). Design goals for 
a  software  video CODEC may include: 

1. Maximise  encoded  frame  rate. A suitable  target  frame  rate  depends  on  the  application,  for 
example, 12-15 frames  per second for  desktop  video  conferencing and 25-30 frames  per 
second for  television-quality  applications. 

2. Maximise  frame  size  (spatial  dimensions). 

3. Maximise  ‘peak’ coded bit rate.  This may seem an unusual goal  since  the aim of a 
CODEC is to compress  video: however, it  can be useful to  take  advantage of a high 
network transmission rate  or  storage  transfer  rate  (if  it  is  available) so that video can be 
coded at a high quality.  Higher coded bit rates  place  higher  demands on the processor. 

4. Maximise  video quality (for  a given bit  rate). Within the constraints of a  video  coding 
standard, there are usually many opportunities to ‘trade  off’  video  quality  against 
computational complexity, such as  the  variable  complexity  algorithms  described in 
Chapter 10. 

5. Minimise delay (latency) through the CODEC.  This  is  particularly  important  for two-way 
applications (such as  video  conferencing) where low delay is  essential. 

6. Minimise  compiled  code and/or data  size.  This  is  important  for  platforms with limited 
available memory (such  as  embedded  platforms).  Some  features of the popular video 
coding  standards  (such  as the use of B-pictures) provide high compression efficiency at 
the  expense of increased  storage  requirement. 

7. Provide  a flexible API, perhaps  within  a  standard  framework such as DirectX (see 
Chapter 12). 

8. Ensure that code  is  robust  (i.e.  it  functions  correctly  for any video sequence,  all  allowable 
coding  parameters and under  transmission  error  conditions),  maintainable and easily 
upgradeable (for example  to add support  for  future  coding  modes and standards). 
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Figure 13.8 Trade-off of frame size and frame rate in a software CODEC 

9. Provide  platform  independence where possible.  ‘Portable’  software that may be executed 
on a number of platforms can have advantages  for  development,  future  migration to other 
platforms and marketability. However, achieving maximum performance may require some 
degree of platform-specific  optimisation  (such  as the use  of SIMDNLIW instructions). 

The first four  design  goals  listed  above may be mutually exclusive.  Each of the goals 
(maximising  frame  rate,  frame  size, peak bit rate and video  quality)  requires an increased 
allocation of processing  resources. A software video CODEC is usually constrained by the 
available  processing  resources andor the  available  transmission bit rate. In a  typical 
scenario,  the number of macroblocks of video that a  CODEC can process  is roughly 
constant  (determined by either  the  available bit rate or the available  processing  resources). 
This means that increased  frame rate can only be achieved at the  expense of a  smaller  frame 
size and vice  versa.  The graph in  Figure 13.8 illustrates  this trade-off between  frame  size and 
frame  rate in a  computation-constrained  scenario.  It may, however, be possible to ‘shift’  the 
line to the right (i.e.  increase  frame  rate without reducing  frame  size  or  vice  versa) by 
making  better use of the  available  computational  resources. 

13.3.2 Specification and Partitioning 

Based on the  requirements of the  syntax  (for  example, MPEG-2, MPEG-4 or H.263), an 
initial  partition of the  functions  required  to  encode and decode  a  frame of video can be made. 
Figure 13.9 shows a simplified flow diagram  for  a  blocklmacroblock-based  inter-frame 
encoder  (e.g.  MPEG-1, MPEG-2, H.263  or MPEG-4) and Figure 13.10 shows the  equivalent 
decoder flow diagram. 

The  order of some of the operations  is fixed  by the  syntax of the  coding  standards. It is 
necessary to carry  out  DCT and quantisation of each block within a  macroblock before 
generating  the VLCs for the macroblock  header:  this  is  because  the  header  typically  contains 
a ‘coded block pattern’ field that indicates which of the six blocks  actually  contain  coded 
transform  coefficients.  There is greater  flexibility  in  deciding the order of some of the  other 
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operations. An encoder may choose to  cany out motion estimation and compensation for the 
entire  frame before carrying  out the  block-level operations (DCT, quantise, etc.), instead of 
coding  the blocks immediately after motion compensating the macroblock. Similarly, an 
encoder or decoder may choose to reconstruct each motion-compensated macroblock either 
immediately after decoding the residual blocks or after the entire residual frame has been 
decoded. 

The following principles can help to decide the structure of the software program: 

1. Minimise interdependencies between coding functions in  order to keep the software 
modular. 

2. Minimise  data copying between functions (since each  copy  adds computation). 

3. Minimise function-calling overheads. This may involve combining functions, leading to 
less modular  code. 

4. Minimise latency. Coding and transmitting each macroblock immediately after motion 
estimation and compensation  can reduce latency. The coded data may  be transmitted 
immediately, rather than waiting until  the entire frame has been motion-compensated 
before coding and transmitting the residual data. 

13.3.3 Designing the Functional Blocks 

A good approach is to start with the simplest possible implementation of each algorithm (for 
example, the basic form of the  DCT shown in Equation 7.1) in  order to develop a functional 
CODEC as quickly as possible. The first  ‘pass’ of the design will result in a working, but 
very inefficient, CODEC and the performance can then be improved by replacing the basic 
algorithms with ‘fast’ algorithms. The first version of the design may be used as a 
‘benchmark’ to ensure that later, faster versions still meet the requirements of the coding 
standard. 

Designing the encoder and decoder in tandem and taking advantage of ‘natural’ points at 
which the two  designs  can interwork may further ease  the design process. Figure 13.11 
shows some  examples of interworking points. For  example, the residual frame produced 
after encoder motion compensation may be ‘fed’ to the decoder motion reconstruction 
function and the decoder output frame should match the encoder input frame. 
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13.3.4 Improving Performance 

Once  a basic  working CODEC has  been developed,  the  aim  is  to improve the  performance in 
order to meet  the design goals  discussed above. This may  involve some  or all of the 
following steps: 

1.  Carry  out software profiling to measure  the  performance of individual functions.  This  is 
normally carried  out  automatically by the compiler inserting timing code  into  the 
software and measuring  the  amount of time spent  within each  function.  This process 
identifies ‘critical’ functions, i.e. those  that take the most  execution  time. 

2.  Replace  critical  functions with ‘fast’ algorithms. Typically,  functions  such as motion 
estimation, DCT and  Variable-length  coding are  computationally  critical.  The  choice of 
‘fast’ algorithm depends on the platform  and to  some extent the design structure of the 
CODEC. It is often  good practice  to  compare several alternative algorithms and to choose 
the  best. 

3.  Unroll loops. See  Section 6.8.1 for an example of  how a motion estimation function  may 
be  redesigned to reduce  the overhead due to incrementing  a  loop counter. 

4. Reduce  data  interdependencies. Many processors have the ability to execute multiple 
operations in parallel (e.g. using SIMDNLIW instructions); however, this  is only  possible 
if the operations are working  on independent  data. 

5. Consider  combining functions to  reduce function calling  overheads and data  copies.  For 
example,  a  decoder  carries  out inverse  zigzag ordering of a  block followed  by  inverse 
quantisation. Each operation involves a movement  of data  from  one array into another, 
together with the overhead  of calling and returning  from  a  function. By combining  the 
two  functions,  data movement  and function  calling overhead is  reduced. 

6. For computationally critical operations (such as motion estimation),  consider using 
platform-specific optimisations such as  inline  assembler  code,  compiler  directives or 
platform-specific library  functions (such as Intel’s image processing library). 

Applying some  or all of  these  techniques  can dramatically improve  performance.  However, 
these approaches can  lead to increased  design time, increased compiled  code size (for 
example,  due to unrolled loops) and complex  software  code that is difficult to maintain  or 
modify. 

Example 

An  H.263 CODEC was  developed for  the  TriMedia TMlOOO platform.’  After the ‘first 
pass’ of the software  design process (i.e. without detailed  optimisation),  the CODEC ran 
at the unacceptably  low rate of 2 CIF frames per second. After  reorganising the software 
(combining functions  and  removing interdependencies between data), execution  speed 
was increased to 6 CIF frames per second. Applying  platform-specific  optimisation of 
critical functions  (using  the  TriMedia VLIW instructions) gave  a  further  increase to 15 
CIF frames per second  (an  acceptable  rate  for video-conferencing applications). 
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13.3.5 Testing 

In addition  to  the normal requirements  for  software  testing,  the  following  areas  should be 
checked  for  a  video  CODEC  design: 

0 Interworking  between  encoder and decoder (if both are  being  developed). 

0 Performance with a  range of video  material  (including ’live’ video if possible),  since 
some  ‘bugs’ may only show up under  certain  conditions  (for  example, an incorrectly 
decoded VLC may only  occur  occasionally). 

0 Interworking with third-party  encoder(s) and decoder(s).  Recent  video  coding  standards 
have software  ‘test  models’  available  that  are  developed  alongside  the  standard and 
provide  a  useful  reference  for  interoperability  tests. 

0 Decoder  performance  under  error  conditions, such as random bit errors and packet  losses. 

To aid in debugging,  it  can be useful to provide  a  ‘trace’ mode in which each of the main 
coding  functions  records its data  to  a  log file. Without this  type of mode,  it can be  very 
difficult to  identify  the  cause of a  software  error  (say) by examining the stream of coded bits. 
A real-time  test  framework which enables ‘live’ video  from  a  camera to be coded and 
decoded  in  real  time using the  CODEC  under  development  can be  very useful for  testing 
purposes, as can be bit-stream  analysis  tools  (such as ‘MPEGTool’) that provide  statistics 
about  a  coded  video  sequence. 

Some  examples of efficient  software  video  CODEC  implementations have been dis- 
Opportunities have been examined  for  parallelising  video  coding  algorithms  for 

multiple-processor  platform^,^-^ and  a method has been  described  for  splitting  a CODEC 
implementation  between  dedicated  hardware and software.8 In the  next  section we  will 
discuss  approaches to designing  dedicated VLSI video  CODECs. 

13.4 DESIGN OF A HARDWARE CODEC 

The  design  process  for  a  dedicated  hardware  implementation is somewhat  different, though 
many of the  design  goals  are  similar  to those for  a  software  CODEC. 

13.4.1 Design Goals 

Design  goals  for  a  hardware  CODEC may include: 

1. Maximise  frame  rate. 

2.  Maximise  frame  size. 

3.  Maximise peak coded  bit  rate. 

4. Maximise  video  quality  for  a  given  coded  bit  rate. 

5. Minimise  latency. 

6. Minimise  gate  countldesign  ‘area’,  on-chip memory and/or power consumption. 
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7. Minimise  off-chip  data  transfers  (‘memory  bandwidth’) as these  can  often  act  as  a 
performance  ‘bottleneck’  for  a  hardware  design. 

8. Provide  a flexible interface to the host system (very often  a  processor running higher-level 
application  software). 

In a  hardware  design,  trade-offs  occur  between  the first four  goals  (maximise  frame  rate/ 
frame  size/peak bit rate/quality) and numbers (6) and (7)  above  (minimise  gate  count/power 
consumption and memory bandwidth). As discussed in Chapters 6-8, there  are many 
alternative  architectures  for  the key coding  functions  such  as motion estimation, DCT and 
variable-length  coding,  but  higher  performance often requires  an  increased  gate  count. An 
important  constraint  is  the cycle budget for  each  coded  macroblock.  This can be calculated 
based on the  target  frame rate and frame  size and the  clock speed of the  chosen  platform. 

Example 

Target frame  size:  QCIF  (99  macroblocks  per  frame, H.263MPEG-4 coding) 
Target frame  rate:  30  frames  per  second 
Clock  speed: 20 MHz 

Macroblocks  per  second: 99 X 30 = 2970 
Clock  cycles per macroblock: 20 x 106/2970 = 6374 

This  means that all macroblock  operations must be completed within 6374  clock  cycles. 
If the various operations  (motion  estimation,  compensation, DCT, etc.)  are  carried out 
serially then the sum total for  all  operations must not exceed  this  figure; if the operations  are 
pipelined  (see below) then any one  operation must not take more than 6374  cycles. 

13.4.2 Specification and Partitioning 

The  same  sequence of operations  listed in Figures 13.9 and  13.10 need to be carried out by a 
hardware  CODEC.  Figure  13.12 shows an example of a  decoder that uses a ‘common bus’ 
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Figure 13.12 Common bus architecture 
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architecture. This type of architecture may be flexible and adaptable but the performance 
may be constrained by data transfer over the bus and scheduling of the  individual  processing 
units. A fully  pipelined  architecture  such as the  example  in  Figure 13.13 has the potential to give 
high performance  due to pipelined execution by the separate functional units.  However, this 
type of architecture may require significant redesign in order to support a different coding 
standard or a new optional coding mode. 

A further consideration for a hardware design is the partitioning between the dedicated 
hardware and the ‘host’ processor. A ‘co-processor’ architecture such as that described in  the 
DirectX VA framework (see Chapter 13) implies close interworking between the host  and 
the hardware on a macroblock-by-macroblock basis. An alternative approach is to move 
more operations into hardware, for  example by allowing the hardware to process a complete 
frame of video independently of the host. 

13.4.3 Designing the Functional Blocks 

The choice of design for  each functional block depends on the design goals (e.g. low area 
and/or power consumption vs. high performance) and to a certain extent on the choice of 
architecture. A ‘common bus’-type architecture may lend itself to the reuse of certain 
‘expensive’ processing elements. Basic operations such as multiplication may  be  reused  by 
several functional blocks (e.g. DCT and quantise). With the ‘pipelined’ type of architecture, 
individual modules do not usually share processing elements and the aim is to implement 
each function as efficiently as possible, for  example using slower, more compact distributed 
designs  such as the distributed arithmetic architecture described in Chapter 7. 

In general, regular, modular  designs are preferable both for ease of design and efficient 
implementation on  the target platform. For example, a motion estimation algorithm that 
maps to a regular hardware design (e.g. hierarchical search) may be preferable to less regular 
algorithms  such as nearest-neighbours search (see Chapter 6). 

13.4.4 Testing 

Testing and verification of a hardware CODEC  can  be a complicated process, particularly 
since  it may be difficult to test with  ‘real’ video inputs until a hardware prototype is 
available. It may be useful to develop a software model that matches the hardware design to 
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assist in  generating test vectors  and checking  the results. A real-time test bench,  where a 
hardware  design is implemented  on a reprogrammable FPGA in conjunction  with a host  system 
and  video capture/display capabilities, can  support testing with a range of  real  video  sequences. 

VLSI video CODEC design approaches and examples have  been  reviewed9-’*  and two 
specific design  case  studies  presented.’ ‘ , I 2  

13.5 SUMMARY 

The design of a  video CODEC depends on the target platform,  the transmission  environment 
and the user  requirements.  However, there are  some  common  goals and  good  design 
practices  that may  be  useful for  a  range of designs.  Interfacing to a video CODEC is an 
important  issue,  because of the need to efficiently handle a high  bandwidth  of video  data in 
real time and because flexible control of the CODEC can make  a significant difference to 
performance.  There  are many options  for  partitioning the design into functional blocks and 
the  choice of partition will affect the  performance and  modularity of the system. A large 
number of alternative  algorithms and  designs exist  for  each of the main  functions in  a video 
CODEC. A good design  approach is to use simple  algorithms where  possible  and to  replace 
these  with more  complex,  optimised  algorithms in  performance-critical areas of the design. 
Comprehensive testing with a range of video  material  and operating parameters is essential 
to ensure that all modes of CODEC operation are working correctly. 

REFERENCES 

1. I. Richardson, K. Kipperman and G. Smith, ‘Video coding using digital signal processors’, DSP 
World Fall Conference, Orlando, 1999. 

2. J. McVeigh et al., ‘A software-based real-time MPEG-2 video encoder’, IEEE Trans. CSVT, 10(7), 
October 2000. 

3. S. Akramullah, 1. Ahmad and M. Liou, ‘Optimization of H.263 video encoding using a single 
processor computer’, IEEE Trans. CSVT, 11(8), August 2001. 

4. B. Erol, F. Kossentini and  H. Alnuweiri, ‘Efficient coding and mapping algorithms for software-only 
real-time video coding at low bit rates’, IEEE Trans. CSVT, 10(6), September 2000. 

5. N. Yung and  K. Leung, ‘Spatial and temporal data parallelization of the H.261 video coding 
algorithm’, IEEE Trans. CSVl; 11(1), January 2001. 

6. K. Leung, N. Yung and P. Cheung, ‘Parallelization methodology for video coding-an implementa- 
tion on the TMS320C80’, IEEE Trans. CSVT, 10(8), December 2000. 

7. A. Hamosfakidis, Y. Paker and J.  Cosmas, ‘A study of concurrency in MPEG-4 video encoder’, 
Proceedings of IEEE Multimedia Systems’98, Austin, Texas, July 1998. 

8. S. D. Kim, S. K. Jang, J. Lee, J. B. Ra, J. S. Kim, U. Joung, G. Y. Choi and J. D. Kim, ‘Efficient 
hardware-software co-implementation of H.263 video CODEC’, Proc. IEEE Workshop on Multi- 
media Signal Processing, pp. 305-310, Redondo Beach, Calif., 7-9 December 1998. 

9. P. Pirsch, N. Demassieux and W. Gehrke, ‘VLSI architectures for video compression-a survey’, 
Proceedings of the IEEE, 83(2), February 1995. 

10. P. Pirsch and H. -J. Stolberg, ‘VLSI implementations of image and video multimedia processing 
systems’, IEEE Transactions on Circuits and Systems for Video Technology, 8(7), November 1998, 
pp. 878-891. 



288 VIDEO CODEC  DESIGN 

11. P. Pirsch and H. -J. Stolberg, ‘VLSI implementations of image and video multimedia processing 
systems’, IEEE Transactions  on Circuits and Systerns for Video Technology,  8(7), November 1998, 
pp. 878-891. 

12. A. Y. Wu, K. J. R. Liu, A. Raghupathy and S. C. Liu, System  Architecture of a  Massively Parallel 
Programmable Video Co-Processor, Technical Report ISR TR 95-34, University of Maryland, 
1995. 


