An Overview of JPEG2000

Outlines

- Standard Bodies:
 - ISO: SC29WG01 (JPEG, JBIG)
- JPEG2000:
 - The Scope and Goal of JPEG2000
 - JPEG2000 Schedule
- Embedded Coding:
 - Embedded Block Coding with Optimized Truncation(EBCOT)
- Region of Interest(ROI)
 - The Feature and Issue of ROI
 - Derive the ROI mask
 - Two Implementations of ROI: Sequence based mod and Scaling based mode
 - Multiple ROIs

@NTUEE DSP/IC Lab

The Scope and Goal of JPEG2000

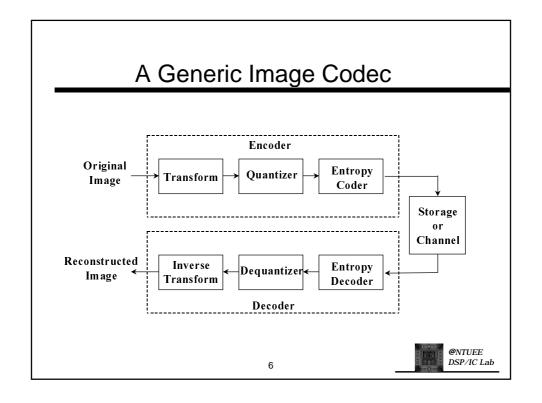
- A new and unified coding scheme for all kinds of still images:
 - Color, gray-level, and bi-level images
 - Natural images, scientific, medical, aerial, remote sensing imagery, text, and rendered graphics
- Low bit-rate compression performance
- · Lossless and lossy compression
- · Large images
- Single decompression architecture
- · Computer generated imagery
- · Compound document
- Transmission in noisy environments

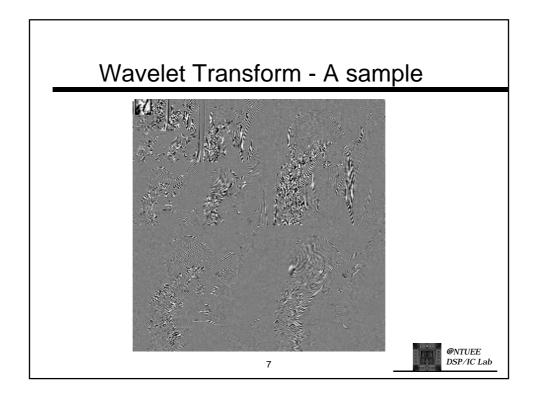
@NTUEE DSP/IC Lab

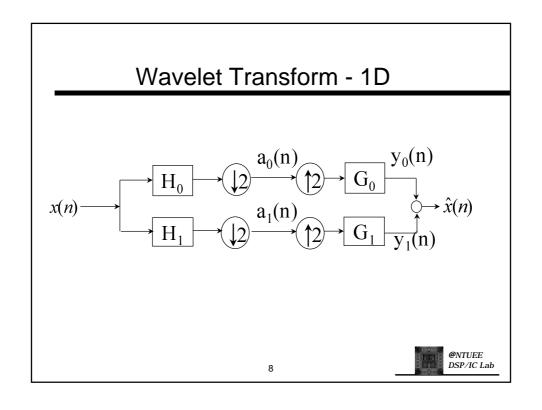
3

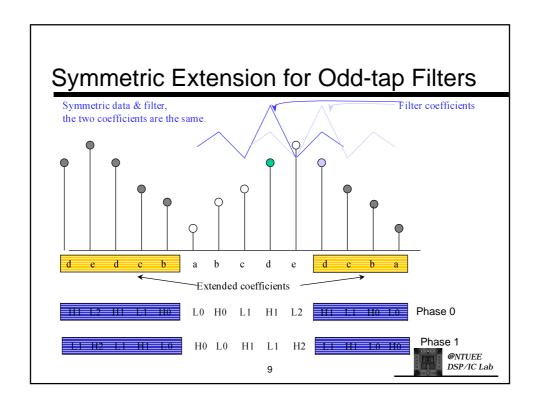
JPEG 2000 Features

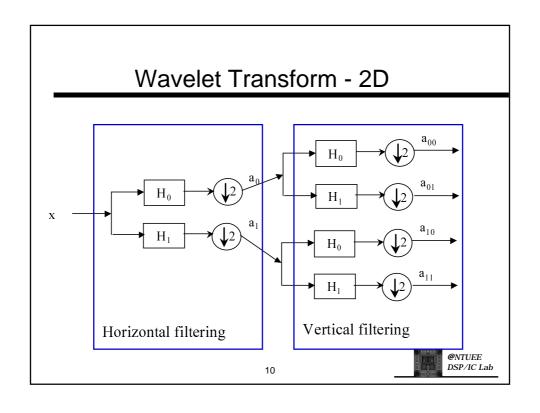
- · Not only better efficiency, but also more functionality
 - Superior low bit-rate performance
 - Lossless and lossy compression
 - Progressive transmission by quality, visual and resolution
 - Fixed-rate, fixed-size, limited workspace memory
 - Random codestream access and processing
 - Robustness to bit errors

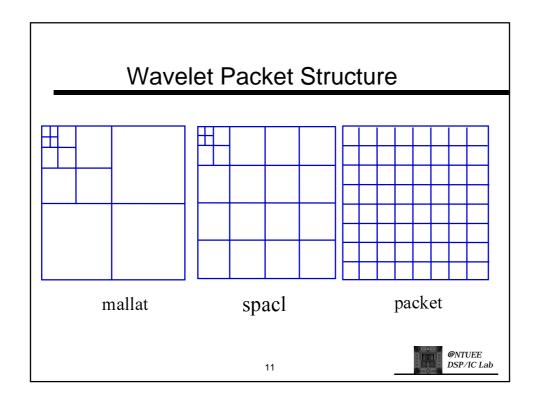


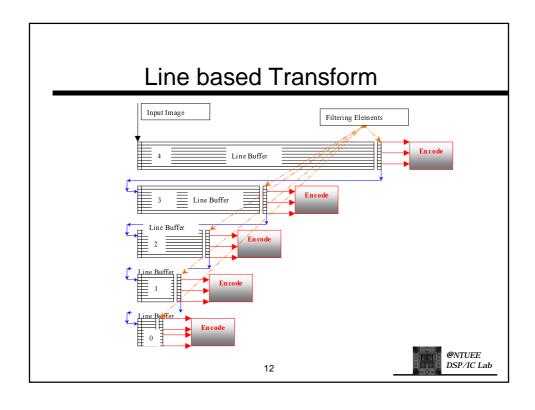

JPEG2000 Schedule


Call for Contributions: 97/3Algorithm Evalution: 97/11


Working Draft: 99/3 -- 99/7 (original:98/7 -- 98/11)
 Committee Draft: 99/7 -- 00/11? (orig: 98/11 -- 00/3)
 Draft Int'l Standard: 00/11 -- 01/3? (orig: 00/3 -- 00/7)
 International Standard: 01/3 -- 01/11? (orig: 00/7 -- 01/3)







Recommended Wavelet Filter

- Wavelet 9-7 filter for lossy compression
 - Best performance at low bit rate
 - Relatively high implementation complexity, especially for hardware

i	h_0	h_1
0	0.6029490182363579	1.115087052456994
1	0.2668641184428723	-0.5912717631142470
2	-0.07822326652898785	-0.05754352622849957
3	-0.01686411844287495	0.09127176311424948
4	0.02674875741080976	

13

Recommended Wavelet Filter (cont.)

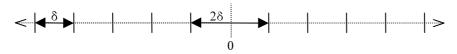
- CRF 13-7 filter for lossy integer arithmetic mode
 - Integer arithmetic, low implementation complexity

i	h_0	h_1
0	164/256	1
1	80/256	-9/16
2	-31/256	0
3	-16/256	1/16
4	14/256	
5	0	
6	-1/256	

@NTUEE DSP/IC Lab

Recommended Wavelet Filter (cont.)

- I 5-3 filter for lossless coding
 - Integer arithmetic, low implementation complexity


i	h_0	h_1
0	6/8	1
1	2/8	-1/2
2	-1/8	0

15

Quantizer

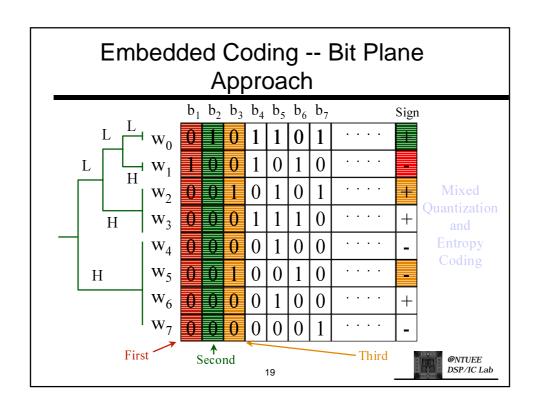
- Scalar quantizer with a dead-zone which the central dead-zone is twice as large as the step size, $\,\delta\,$

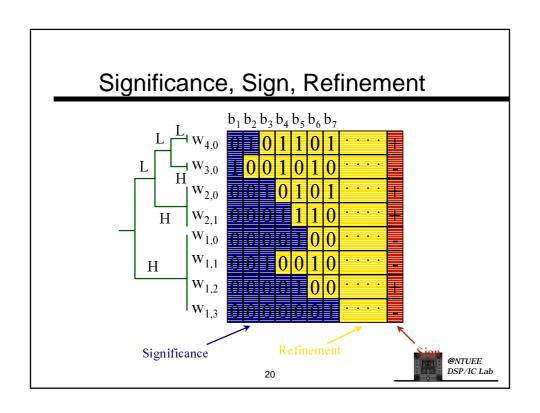
$$V[m,n] = \left| \frac{|s[m,n]|}{\delta} \right|$$

 $\chi[\mathbf{m},\mathbf{n}] = \begin{cases} 0 & +s \\ 1 & -s \end{cases}$

Quantized Magnitude

Sign


Entropy Coding


- Embedded Coding: A major development of recent years
- Basic Idea: Bit plane approach
 - The most significant bits are transmitted first.
- Merits:
 - The ability to terminate encoding and decoding at any point
 - Ideal for progressive image transmission
 - Easy rate control
- Drawback: Need to scan coefficients multiple times
- Embedding Coding Algorithm:
 - Embedded Block Coding with Optimized Truncation(EBCOT) adopted by VM3A

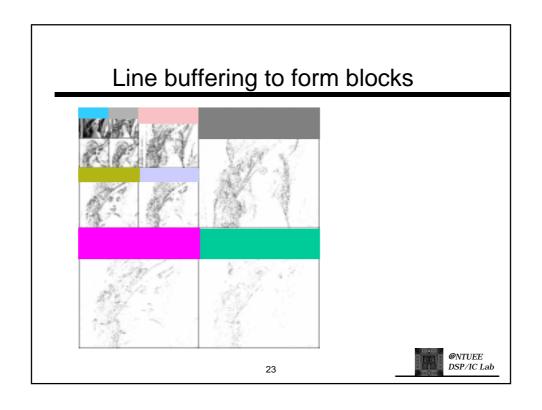
17

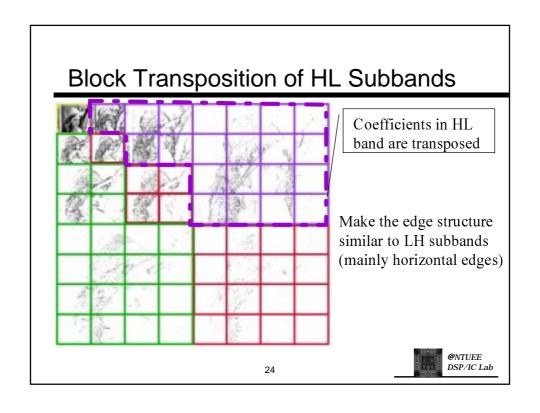
@NTUEE DSP/IC Lab

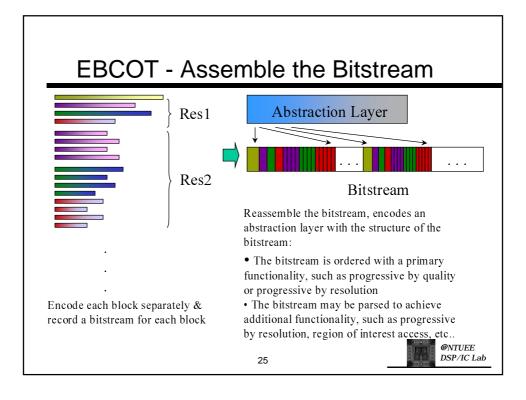
Conventional Coding Sign $b_1 \ b_2 \ b_3 \ b_4 \ b_5 \ b_6 \ b_7$ First Second 0 Third 0 \mathbf{w}_3 0 0 0 0 Η 0 W_4 0 0 0 0 0 Η W_6 0 0 0 @NTUEE DSP/IC Lab 18

EBCOT (Embedded Block Coding with Optimized Truncation)

• Proposed by David Taubman, HP, in JPEG Los Angeles meeting, Nov. 1998.


21

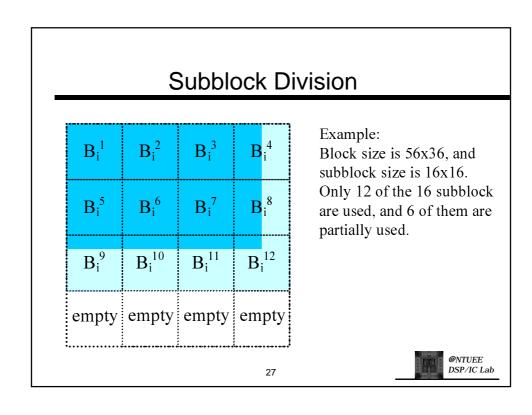

- Key Ideas:
 - Partition subbands into smaller blocks (e.g. 64x64)
 - Form independent, embedded bit-stream for each block
- Key features of EBCOT:
 - Low memory requirement in coding and decoding
 - Easy rate control
 - High compression performance
 - Region of interest (ROI) access
 - Error resilience
 - Simple quantization
 - Modest complexity

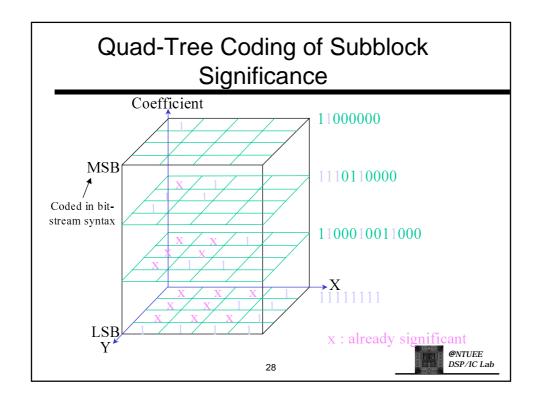

@NTUEE DSP/IC L

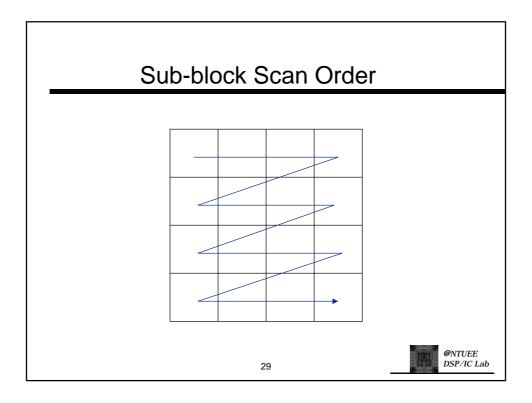
Encode each block separately & record the bitstream of each block.

Block size is 64x64.

Block Embedded Coding

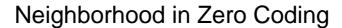

Highlight

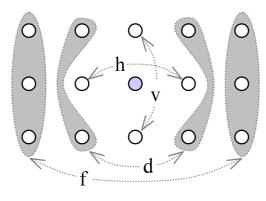

- fractional bitplane embedded coding: divide subband bitplane into groups with similar statistical characteristics.
- Quadtree front end to reduce computational complexity
- Context arithmetic coding


Key Steps:

- When a block is first seen, send the maximum bit plane in the whole block
- Partition the blocks into sub-blocks 16x16
- Proceed with bit plane coding
- A quad-tree code is used up to the sub-block level
- After reaching the sub-block level, scan the bit planes from more significant to less significant

@NTUEE DSP/IC Lab





Types of Coding Operations

- Zero Coding (ZC)
 - Used to code new significance
 - 10 contexts according to the significance of its neighbors
- Run-Length Coding (RLC)
 - Group 4 insignificant coefficients when they are very probable
 - Reduce the average number of symbols needed to be coded
 - One context for whether all four are insignificant
- Sign Coding (SC)
 - Used to code the sign right after a coefficient is identified significant.
 - 5 contexts based on the sign of four neighbors
- Magnitude Refinement (MR)
 - 3 contexts depending on the significance of its neighbors and whether it is the first time for refinement

@NTUEE DSP/IC Lab

O Current coefficient

h: number of significant horizontal neighbors (0-2)

v: number of significant vertical neighbors (0-2)

d: number of significant diagonal neighbors (0-4)

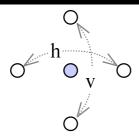
d: number of significant non-immediate neighbors (0-6)

31

Zero Coding Context

LL, LH and HL subbands			HH subband					
h	V	d	f	context	d	h+v	f	Context
2	X	X	X	9	≥3	X	X	9
1	≥1	X	X	8	2	≥1	X	8
1	0	≥1	X	7	2	0	X	7
1	0	0	X	6	1	≥2	X	6
0	2	X	X	5	1	1	X	5
0	1	X	X	4	1	0	X	4
0	0	≥2	X	3	0	≥2	X	3
0	0	1	X	2	0	1	X	2
0	0	0	≥1	1	0	0	≥1	1
0	0	0	0	0	0	0	0	0

@NTUEE DSP/IC Lab


Run-Length Coding (RLC)

- · Invoked in normalization if and only if
 - 4 consecutive horizontal symbols are in the insignificant state.
 - All 4 symbols have only zero neighborhoods.
 - All 4 symbols are horizontally adjacent and reside within a subblock.
 - Aligned on a two-sample boundary.
- · Encoding:
 - Encoded a special symbol with a single context. The special symbol identifies if all 4 symbols are insignificant (0: yes, 1:no)
 - if any of symbols is significant, a 0-based index of the 1st significant symbol is sent as a two-bit quantity (arithmetic coding with balanced probability distribution)

33

Context in Sign Coding

h, v: neighborhood sign status

-1: one or both negative

0: both insignificant or both significant but opposite sign

1: one or both positive

h	V	Ŷ	context
1	1	70	4
1	0	0	3
1	-1	0	2
0	1	0	1
0	0	0	0
0	-1	1	1
-1	1	1	2
-1	0	1	3
-1	-1	$\setminus 1$	4

Expected Sign

Magnitude Refinement

$\sigma_{[m,n]}$	h+v	Context
1	X	2
0	≥1.	1
0	0 \	0

Any of immediate horizontal and vertical neighbors are significant.

 $\sigma_{[m,n]}$: Whether magnitude refinement has been applied

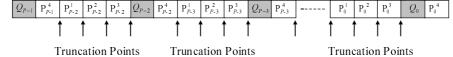
h, v : Defined as in zero coding

@NTUEE DSP/IC Lab

35

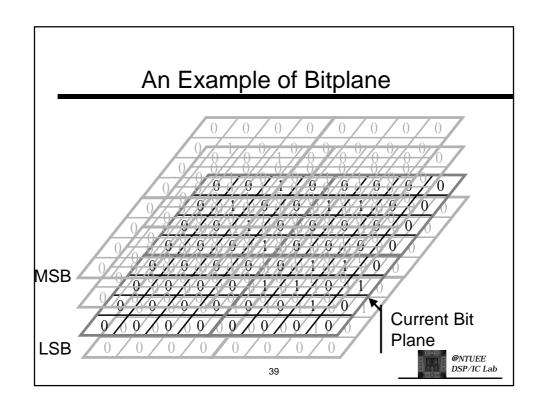
Context Statistics

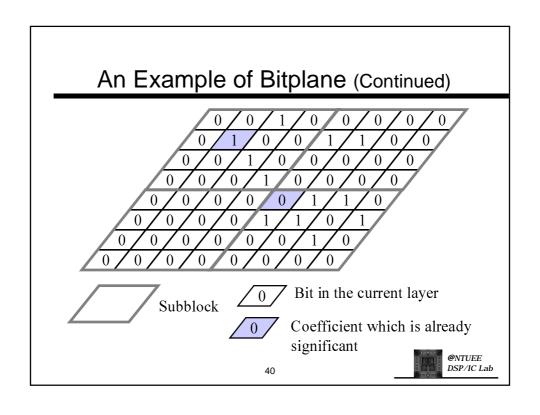
- · Each context
 - T: 9 bit count of total number of symbols
 - N: 4 bit count of total number of symbol '1'
 - Both count fields are initialized to 1
 - Whenever either counts overflows, both count fields are normalized with a right shift
 - At end of a bitplane, both count fields of zero coding (10 contexts)
 are normalized (right shift) so long as: T>32 & N>2
 - Probability can be calculated by a lookup table with 13 bits (16kB)
 - Note:
 - Adapted to the expectation that highly skewed context will be skewed toward the 0 symbol
 - · Adaptation is much quicker towards a less skewed distribution

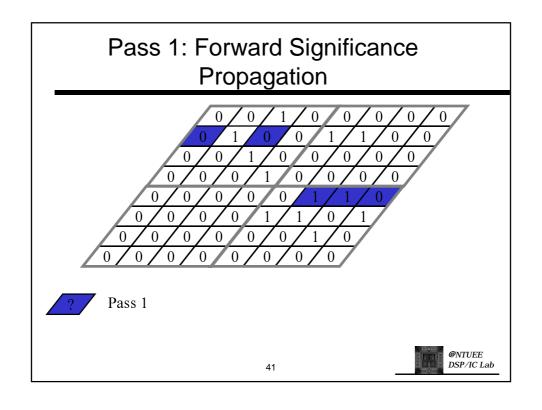


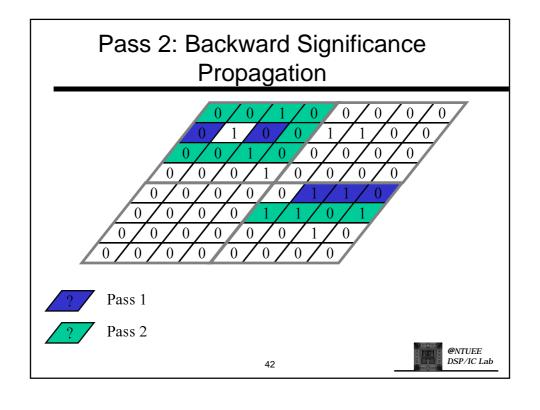
Fractional Bitplane Block Coding

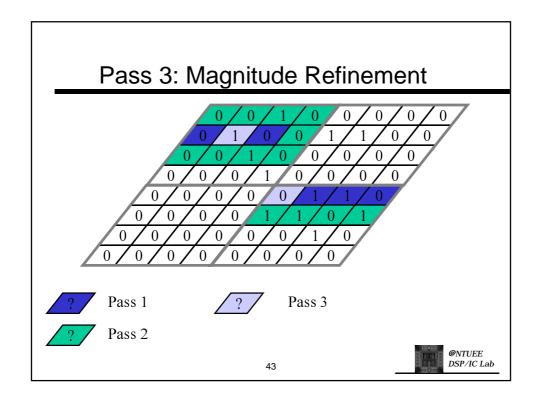
- Within each bitplane, there are 4 passes:
 - Forward significance propagation pass: P1 (Zero Coding + Sign Coding)
 - · Only for subblocks which are significant, and for all samples which are insignificant and have a preferred neighbor (LL, HL, LH: with at least one horizontal significant neighbor, HH: at least one significant diagonal
 - Backward significance propagation pass: P² (Zero Coding + Sign
 - Similar to P^{I} , except in reverse order and consider samples with at least one significant neighbor in the 8 immediate neighbors and not processed in P^I
 - Magnitude refinement pass: P³ (Magnitude Refinement)
 - Significant coefficients not processed in P^1 and P^2
 - Normalization pass: P^4 (Zero Coding + Run-Length Coding Coding)

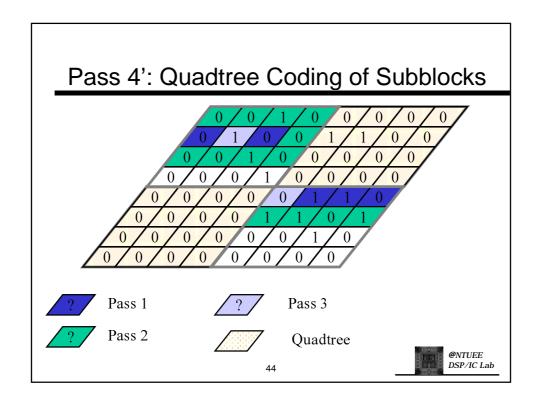

An Embedded Block Bit-Stream and Its Possible Truncation Points

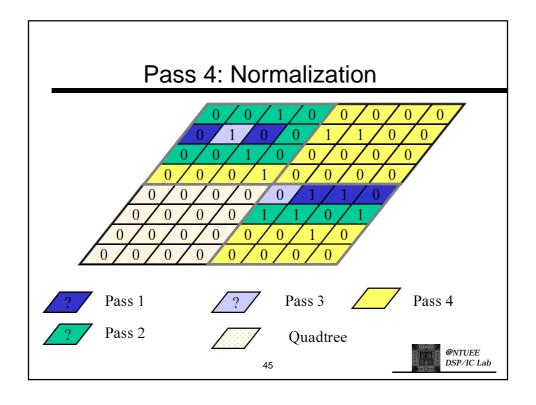

Q_b: quad-tree information for bit-plane b P_b: pass i information for bit-plane b P-1: Most significant bit for the block




Truncation Points Truncation Points


> @NTUEE DSP/IC Lab

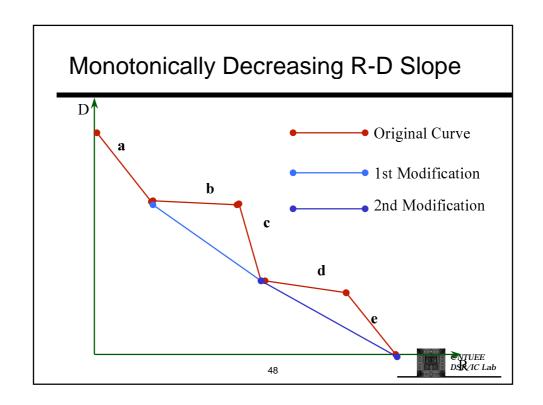


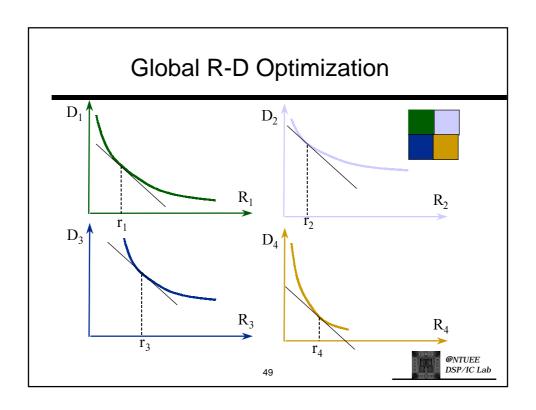


Post Compression R-D Optimization

- · Compress each block independently at a high enough rate
- Store rate distortion information for each coding pass
- After Compressing a number of blocks revisit the bit stream
 - Allocate bits among different blocks
 - Remove all extra bits from blocks in an R-D optimal way
- The rate Distortion Optimization is only done at the encoder
- The decoder does not need to know about R-D information
- Post Rate Distortion Optimization is essential
 - Rate control
 - High compression performance
 - Optimal Decodable Embedded bit stream

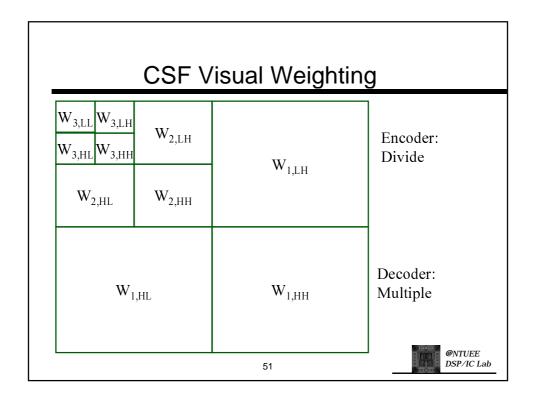
@NTUEE DSP/IC Lab

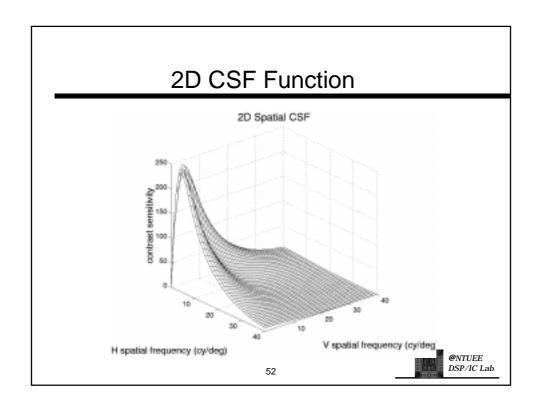

Rate-Distortion Optimization

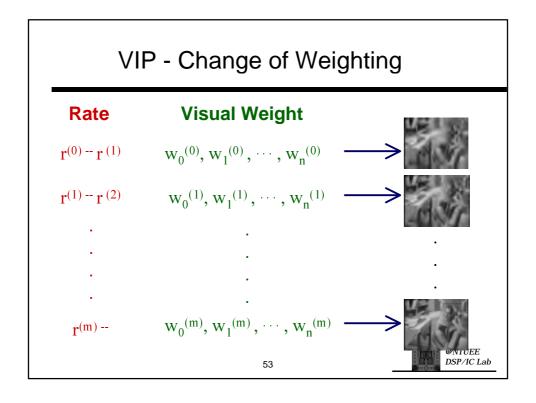

- · For each block
 - Embedded encode each block with the fractional bitplane coder
 - The end of each coding pass is a viable truncation point, record the rate R_i^k and distortion D_i^k , where i indexes the block, k indexes truncation point
 - Select a set of monotonically decreasing truncation points:
 - 1) Set $N_i = \{\text{the set of all truncation points}\}, \text{ set } S_i^0 = \infty$
 - 2) Set p = 0,
 - 3) For k=1,2,3,4,...

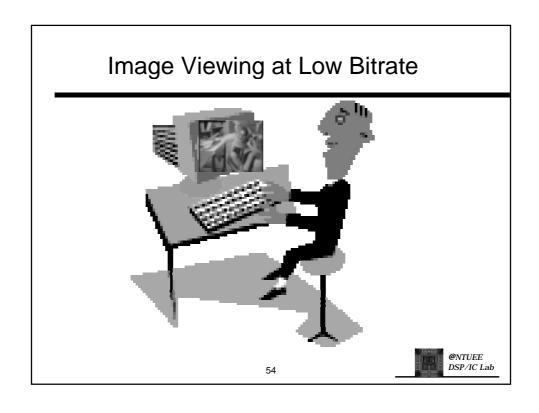
If k belongs to N_i , Set $\Delta R_i^k = R_i^k - R_i^p$ and $\Delta D_i^k = D_i^p - R_i^k$ Set $S_i^k = \Delta D_i^k / \Delta R_i^k$, if $p \neq 0$ and $S_i^k > S_i^p$ then remove p from N_i and go to step (2)

Otherwise, set p = k

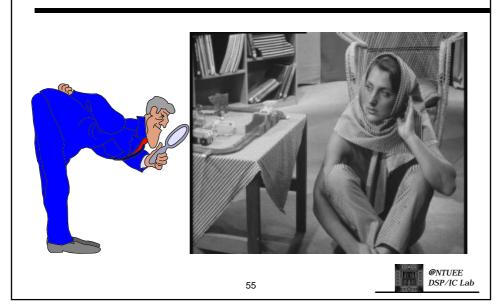


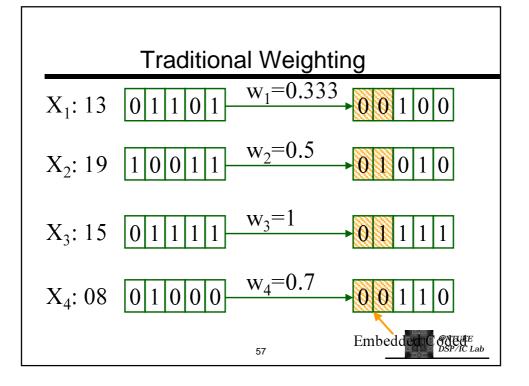


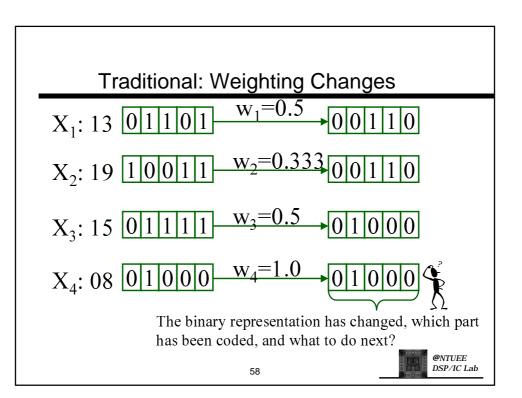

Visual Weighting

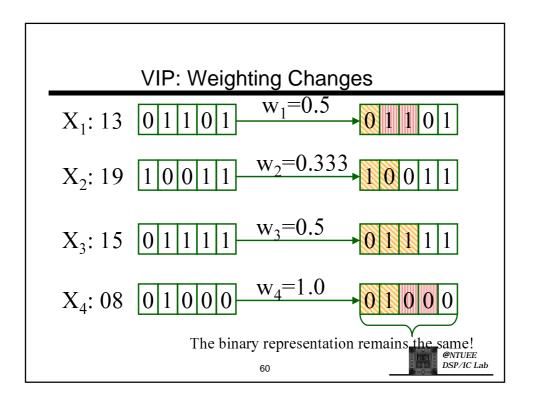

- Fixed visual weighting
 - Contrast Sensitivity Function (CSF) weights
 - Implementation
 - Multiply/ divide the CSF weights
 - Adjust quantization step size according to the weights
- · Visual progressive coding
 - Enables the **change** of viewing conditions (visual weighting factor) during the embedding process
 - Improve the subjective image quality over the entire bit rate range
 - Implementation use the weighting factor to change the order of coding rather than the value of coding

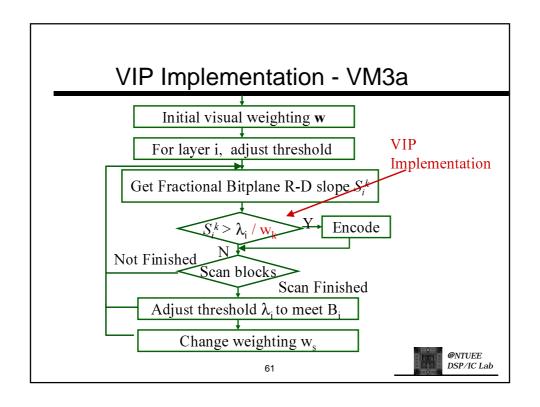
@NTUEE DSP/IC Lab




Image Viewing at High Bitrate




Visual Weighting Traditional vs Visual Progressive


- Traditional:
 - Multiplying/ dividing the coefficient by the weighting factor, quantize if necessary $x_i' = x_i \cdot w_i$ or $x_i' = Q \left[\frac{x_i \cdot w_i}{q_i} \right]$
 - The binary representation of the coefficient changes with the weighting factor
 - Change of the weighting factor cause difficulties in the embedded coding
- Visual progressive coding (VIP)
 - Use the weighting factor to change to the coding order, rather than the coding content

Region of Interest Coding (ROI)

- Allows certain parts of image to be coded with better quality
- Idea:
 - Calculate wavelet transform of whole image/time
 - calculate ROI mask, i.e., set of needed coefficients
- · The Feature and Issue of ROI
- Encoding in done in two ways
 - Sequence based mode
 - Scaling based mode

The Feature and Issue of ROI

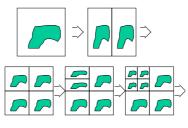
Features

- Progressive mode
- Reconstruction of RoI is faster than the rest
- ROIs need to be coded losslessly and the rest of the image only visually losslessly.
- Savings in storage space and transmission speed
- Application : Internet, Interactive browser

Issues

- No difference coding
- Visually annoying edges do not occur around the RoI
- ROI is specified in the beginning, or in the middle of encoding
- Speed is flexible by the user
- Independent of the quantization or entropy coding scheme

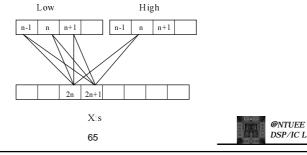
63


Derive the ROI mask

· Derive the mask

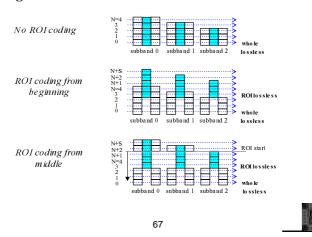
$$M(x,y) = \begin{cases} 1 & \text{The wavelet coefficient } (x,y) \text{ is needed} \\ 0 & \text{Accuracy on } (x,y) \text{ can be sacrificed without affecting ROI} \end{cases}$$

Trace backward to see if the coefficients corresponding to the mask


Calculate the lossless mask

Derive the Corresponding Coefficients

- Example: S+P transform
 - the inverse transform $X(2n+1) = L(n) + \frac{H(n)}{2} + \left(\frac{L(n-1) L(n+1)}{128}\right)$ $X(2n) = L(n) \frac{H(n)}{2} \left(\frac{L(n-1) L(n+1)}{128}\right)$
- · Corresponding coefficients


Two Implementations of ROI

- Sequence based code
 - ROI coefficients are coded as independent sequences
 - Allows random access to ROI without fully decoding
 - Can specify exact quality/bitrate for ROI and the BG
- Scaling based mode:
 - Scale ROI mask coefficients up (decoder scales down)
 - During encoding, the ROI mask coefficients are found significant at early stages of the coding
 - ROI always coded with better quality than BG
 - Can't specify rate for BG and ROI

Scaling Based Mode

ROI can be specified in the beginning or in the middle of encoding

Multiple ROIs

- · Mask coefficient
 - If the ith bit is on then it means that the corresponding wavelet coefficient belongs to the ith ROI
 - If a wavelet coefficient belongs to ROI 0 and 3, its corresponding ROI mask coefficient has the binary value 00001001
- Overlapping ROIs
 - ROIs may overlap in the wavelet domain, even if they do not overlap in the image domain

@NTUEE DSP/IC Lab

Encoding of Multiple ROIs

- Sequence Based Mode
 - The wavelet coefficients that belong to more than one ROI are repeated in all the sequences to which their ROIs correspond.
- · Scaling Based Mode
 - If WT coefficients associated with several ROIs, thy are assumed to belong to the ROI whose scaling value is the highest

69

Conclusion

- JPEG 2000 will offer an still image compression scheme with not only better efficiency, but also many useful functionalities
- · It is still an on-going, open standard
- Try to keep the core part of the standard from slipping too long: Three-parts are proposed:
 - Part 1: Core that is required of every decoder
 - Part 2: Value-added technologies (one meeting behind the Part 1)
 - Part 3: Advanced technology extensions (may not be realized)

@NTUEE DSP/IC Lab