## FUNDAMENTALS OF LOSSY IMAGE COMPRESSION

- The decompression yields an imperfect reconstruction of the original image data.
- Given the level of image loss (or distortion) *D*, there is always a bound on the minimum bit rate of the compressed bit stream.
- A common measure for *D* is the *mean square error* between the encoded and decoded images, normalized by the variance of the input signal

1

*@NTUEE* DSP/IC Lab



## **Rate-Distortion Function for Images**

- **Terminology:** *Rate*(*R*) is the bit rate of the compressed bit stream, *Distortion* (*D*) is normalized by the variance of the encoder input.
- **Rate-Distortion Theory**: Establishes the theoretical minimum bit rate  $R_{min}$  so that the compressed input can be reconstructed within the allowed distortion *D*.
  - For a given D, the **rate-distortion function** R(D) is defined as the minimum possible rate necessary to achieve average distortion D or less.
  - R(D) is independent of the particular compression method and depends only on the underlying stochastic model for the input images and the distortion measure.
- The source-coding theorem states:
  - in lossy compression, it is possible to design a coding-decoding scheme of rate R > R(D) so that the average distortion is D or less,
  - if a coding-decoding system has rate R < R(D), then it is impossible to achieve average distortion D or less with this system.

3























|           | ſ       | 168  | 161 | 161 | 150 | 154 | 168 | 164 | 154 ] |                    |
|-----------|---------|------|-----|-----|-----|-----|-----|-----|-------|--------------------|
|           |         | 171  | 154 | 161 | 150 | 157 | 171 | 150 | 164   |                    |
|           |         | 171  | 168 | 147 | 164 | 164 | 161 | 143 | 154   |                    |
| Original  |         | 164  | 171 | 154 | 161 | 157 | 157 | 147 | 132   |                    |
| Oliginai  | X =     | 161  | 161 | 157 | 154 | 143 | 161 | 154 | 132   |                    |
|           |         | 164  | 161 | 161 | 154 | 150 | 157 | 154 | 140   |                    |
|           |         | 161  | 168 | 157 | 154 | 161 | 140 | 140 | 132   |                    |
|           |         | 154  | 161 | 157 | 150 | 140 | 132 | 136 | 128   |                    |
|           |         |      |     |     |     |     |     |     |       |                    |
|           |         | 1000 |     |     |     |     |     | ``  |       |                    |
|           |         | 214  | 49  | -3  | 20  | -10 | -1  | 1   | -6    |                    |
|           | 1111123 | 34   | -25 | 11  | 13  | 5   | -3  | 15  | -6    |                    |
| After DCT | Th      | -6   | -4  | 8   | -9  | 3   | -3  | 5   | 10    |                    |
|           | Y =     | 8    | -10 | 4   | 4   | -15 | 10  | 6   | 6     |                    |
|           |         | -12  | 5   | -1  | -2  | -15 | 9   | -5  | -1    |                    |
|           |         | 5    | 9   | -8  | 3   | 4   | -1  | -14 | 2     |                    |
|           |         | 2    | -2  | 0   | -1  | 3   | _2  | -3  | -4    |                    |
|           | L       | - 75 | 1   | 0   | 6   |     | -   |     | -2 J  |                    |
|           |         |      |     | 1   | 4   |     |     |     |       | @NTUEE<br>DSP/IC L |



$$z_{kl} = round\left(\frac{y_{kl}}{q_{kl}}\right) = \left\lfloor \frac{y_{kl} \pm \left\lfloor \frac{q_{kl}}{2} \right\rfloor}{q_{kl}} \right\rfloor, k, l = 0, 1, ..., 7,$$
(3.28)

where  $q_{kl}$  denotes the kl-th element of an 8 × 8 quantization matrix Q. ( $\lfloor x \rfloor$  denotes the largest integer smaller or equal to x.) In order to ensure that the same type of clipping is performed for either positive or negative valued  $y_{kl}$ , in (3.28), if  $y_{kl} \ge 0$ , then the two terms in the nominator are added; otherwise they are subtracted. For this example, if the 8 × 8 quantization matrix is given  $\begin{bmatrix} 16 & 11 & 10 & 16 & 24 & 40 & 51 & 61 \end{bmatrix}$ 







| 197 | 184    | 144       | 103                       | 130         | 133                                                       | 70                                                     | 51                                                      | 1                                                     | 198           | 182                                          | 153                                          | 136                                       | 145                        | 145                                    | 95  | 32  |
|-----|--------|-----------|---------------------------|-------------|-----------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|---------------|----------------------------------------------|----------------------------------------------|-------------------------------------------|----------------------------|----------------------------------------|-----|-----|
| 200 | 158    | 111       | 141                       | 179         | 151                                                       | 70                                                     | 73                                                      |                                                       | 182           | 159                                          | 146                                          | 153                                       | 152                        | 129                                    | 98  | 81  |
| 172 | 110    | 111       | 179                       | 192         | 135                                                       | 95                                                     | 144                                                     | 0.60323                                               | 153           | 124                                          | 135                                          | 174                                       | 159                        | 105                                    | 104 | 150 |
| 118 | 77     | 139       | 193                       | 156         | 102                                                       | 128                                                    | 193                                                     | ÷                                                     | 120           | 95                                           | 125                                          | 180                                       | 153                        | 86                                     | 112 | 203 |
| 73  | 75     | 151       | 163                       | 110         | 84                                                        | 154                                                    | 197 '                                                   | X =                                                   | 88            | 84                                           | 120                                          | 159                                       | 130                        | 81                                     | 121 | 211 |
| 54  | 84     | 142       | 122                       | 73          | 90                                                        | 160                                                    | 162                                                     | 200                                                   | 62            | 93                                           | 120                                          | 114                                       | 92                         | 92                                     | 131 | 173 |
| 50  | 95     | 130       | 71                        | 52          | 101                                                       | 146                                                    | 117                                                     | 101.00                                                | 45            | 112                                          | 123                                          | 64                                        | 52                         | 110                                    | 139 | 114 |
| 00  | 4.4.10 |           |                           |             |                                                           |                                                        |                                                         |                                                       |               |                                              |                                              |                                           |                            |                                        |     |     |
| 0   | 115    | 106<br>IC | 55<br>corre               | 63<br>espoi | 116<br>ndin;<br>-60                                       | 118<br>g DC<br>-5                                      | 72 ]<br>T outp<br>-14                                   | out is                                                | 37            | 127                                          | 126                                          | 31                                        | 27                         | 123                                    | 143 | 7:  |
| 00  | 115    | 106<br>IC | 55<br>corre               | 63<br>espor | 116<br>ndin;<br>-60<br>127                                | 118<br>g DC<br>-5<br>139                               | 72 ]<br>T outr<br>-14<br>-40                            | out is<br>-38<br>103                                  | 37            | 127<br>17<br>02                              | 126<br>15<br>-41                             | 31<br>15<br>12                            | -1                         | 123                                    | 143 | 71  |
| 00  | 115    | 106<br>IC | 55<br>corre               | 63<br>espoi | 116<br>nding<br>-60<br>127<br>-76                         | 118<br>g DC<br>-5<br>139<br>123                        | 72 ]<br>T outr<br>-14<br>-40<br>22                      | out is<br>-38<br>103<br>110                           | 37<br>1<br>-1 | 127<br>17<br>02<br>05                        | 126<br>15<br>-41<br>-46                      | 31<br>15<br>12<br>1                       | 27<br>-1                   | 123<br>7<br>3<br>8                     | 143 | 71  |
| 00  | 115    | 106<br>IC | 55<br>corre               | 63<br>espor | 116<br>ndin<br>-60<br>127<br>-76<br>-20                   | 118<br>g DC<br>-5<br>139<br>123<br>-5                  | 72 ]<br>T outp<br>-14<br>-40<br>22<br>29                | out is<br>-38<br>103<br>110<br>-53                    | 37<br>1<br>-1 | 127<br>17<br>02<br>05<br>54                  | 126<br>15<br>-41<br>-46<br>18                | 31<br>15<br>12<br>1<br>-1                 | 27<br>-1<br>-1<br>-1<br>-1 | 123<br>7<br>3<br>8<br>1                | 143 | 7:  |
| 0   | 115    | 106<br>IC | 55<br>corre<br><i>Y</i> = | 63<br>espoi | 116<br>nding<br>-60<br>127<br>-76<br>-20<br>-4            | 118<br>g DC<br>-5<br>139<br>123<br>-5<br>4             | 72 ]<br>T outr<br>-14<br>-40<br>22<br>29<br>5           | out is<br>-38<br>0 103<br>2 110<br>-53<br>0 -25       | 37<br>1<br>-1 | 127<br>17<br>02<br>05<br>54<br>-6            | 126<br>15<br>-41<br>-46<br>18<br>4           | 31<br>15<br>12<br>1<br>-1<br>2            | 27<br>-1                   | 123<br>7<br>3<br>8<br>1<br>5           | 143 | 7:  |
| 0   | 115    | 106<br>IC | 55<br>corre<br><i>Y</i> = | 63<br>espor | 116<br>nding<br>-60<br>127<br>-76<br>-20<br>-4<br>-3      | 118<br>g DC<br>-5<br>139<br>123<br>-5<br>4<br>-10      | 72 ]<br>T outr<br>-14<br>-40<br>22<br>29<br>5<br>9      | out is<br>-38<br>103<br>110<br>-53<br>-25<br>-19      | 37<br>1<br>-1 | 127<br>17<br>02<br>05<br>54<br>-6<br>-5      | 126<br>15<br>-41<br>-46<br>18<br>4<br>8      | 31<br>15<br>12<br>1<br>-1<br>2<br>7       | 27<br>-1<br>-1<br>-1       | 123<br>7<br>3<br>8<br>1<br>5<br>6      | 143 | 71  |
| 0   | 115    | 106<br>IC | 55<br>corre<br>Y =        | 63<br>espor | 116<br>nding<br>-60<br>127<br>-76<br>-20<br>-4<br>-3<br>3 | 118<br>g DC<br>-5<br>139<br>123<br>-5<br>4<br>-10<br>0 | 72 ]<br>T outr<br>-14<br>-40<br>22<br>29<br>5<br>9<br>1 | out is<br>-38<br>103<br>110<br>-53<br>-25<br>-19<br>1 | 37<br>1<br>-1 | 127<br>17<br>02<br>05<br>54<br>-6<br>-5<br>4 | 126<br>15<br>-41<br>-46<br>18<br>4<br>8<br>0 | 31<br>15<br>12<br>1<br>-1<br>2<br>7<br>-1 | 27<br>-1<br>-1<br>-1<br>   | 123<br>7<br>3<br>8<br>1<br>5<br>6<br>2 | 143 | 7:  |



















- For the same SNR, the resulting bit rate is 2.37 bits per sample lower than the rate of uncorrelated source.
- At very low distortions, a DPCM system is 0.4 bits per sample worse than the DCT system.



*@*NTUEE DSP/IC Lab