
 CreateProcess QuickInfo Overview Group

The CreateProcess function creates a new process and its primary thread. The new process
executes the specified executable file.

BOOL CreateProcess(
 LPCTSTR lpApplicationName, // pointer to name of executable module
 LPTSTR lpCommandLine, // pointer to command line string
 LPSECURITY_ATTRIBUTES lpProcessAttributes, // pointer to process security attributes
 LPSECURITY_ATTRIBUTES lpThreadAttributes, // pointer to thread security attributes
 BOOL bInheritHandles, // handle inheritance flag
 DWORD dwCreationFlags, // creation flags
 LPVOID lpEnvironment, // pointer to new environment block
 LPCTSTR lpCurrentDirectory, // pointer to current directory name
 LPSTARTUPINFO lpStartupInfo, // pointer to STARTUPINFO
 LPPROCESS_INFORMATION lpProcessInformation // pointer to PROCESS_INFORMATION
);

Parameters

lpApplicationName
Pointer to a null-terminated string that specifies the module to execute.
The string can specify the full path and filename of the module to execute.
The string can specify a partial name. In that case, the function uses the current drive and current
directory to complete the specification.
The lpApplicationName parameter can be NULL. In that case, the module name must be the first
white space-delimited token in the lpCommandLine string.

The specified module can be a Win32-based application. It can be some other type of module (for
example, MS-DOS or OS/2) if the appropriate subsystem is available on the local computer.

Windows NT : If the executable module is a 16-bit application, lpApplicationName should be
NULL, and the string pointed to by lpCommandLine should specify the executable module. A 16-bit
application is one that executes as a VDM or WOW process.

lpCommandLine
Pointer to a null-terminated string that specifies the command line to execute.
The lpCommandLine parameter can be NULL. In that case, the function uses the string pointed to
by lpApplicationName as the command line.

If both lpApplicationName and lpCommandLine are non-NULL, *lpApplicationName specifies the
module to execute, and *lpCommandLine specifies the command line. The new process can use
GetCommandLine to retrieve the entire command line. C runtime processes can use the argc
and argv arguments.

If lpApplicationName is NULL, the first white space-delimited token of the command line specifies
the module name. If the filename does not contain an extension, .EXE is assumed. If the filename
ends in a period (.) with no extension, or the filename contains a path, .EXE is not appended. If the
filename does not contain a directory path, Windows searches for the executable file in the
following sequence:
1. The directory from which the application loaded.
2. The current directory for the parent process.

3. Windows 95: The Windows system directory. Use the GetSystemDirectory function to get the
path of this directory.

Windows NT: The 32-bit Windows system directory. Use the GetSystemDirectory function to
get the path of this directory. The name of this directory is SYSTEM32.

4. Windows NT only: The 16-bit Windows system directory. There is no Win32 function that

4. Windows NT only: The 16-bit Windows system directory. There is no Win32 function that
obtains the path of this directory, but it is searched. The name of this directory is SYSTEM.

5. The Windows directory. Use the GetWindowsDirectory function to get the path of this
directory.

6. The directories that are listed in the PATH environment variable.

If the process to be created is an MS-DOS - based or Windows-based application, lpCommandLine
 should be a full command line in which the first element is the application name. Because this
also works well for Win32-based applications, it is the most robust way to set lpCommandLine.

lpProcessAttributes
Points to a SECURITY_ATTRIBUTES structure that specifies the security attributes for the
created process.
If lpProcessAttributes is NULL, the process is created with a default security descriptor, and the
resulting handle is not inherited.

lpThreadAttributes
Points to a SECURITY_ATTRIBUTES structure that specifies the security attributes for the
primary thread of the new process. If lpThreadAttributes is NULL, the process is created with a
default security descriptor, and the resulting handle is not inherited.

bInheritHandles
Indicates whether the new process inherits handles from the calling process. If TRUE, each
inheritable open handle in the calling process is inherited by the new process. Inherited handles
have the same value and access privileges as the original handles.

dwCreationFlags
Specifies additional flags that control the priority class and the creation of the process. The
following creation flags can be specified in any combination, except as noted:

Value Meaning
CREATE_DEFAULT_ERROR_MODE

The new process does not inherit the error mode of the
calling process. Instead, CreateProcess gives the new
process the current default error mode. An application sets
the current default error mode by calling SetErrorMode.

This flag is particularly useful for multi-threaded shell
applications that run with hard errors disabled.

The default behavior for CreateProcess is for the new
process to inherit the error mode of the caller. Setting this
flag changes that default behavior.

CREATE_NEW_CONSOLE
The new process has a new console, instead of inheriting the
parent's console. This flag cannot be used with the
DETACHED_PROCESS flag.

CREATE_NEW_PROCESS_GROUP
The new process is the root process of a new process group.
The process group includes all processes that are
descendants of this root process. The process ID of the new
process group is the same as the process ID, which is
returned in the lpProcessInformation parameter. Process
groups are used by the GenerateConsoleCtrlEvent function
to enable sending a CTRL+C or CTRL+BREAK signal to a group of
console processes.

CREATE_SEPARATE_WOW_VDM
This flag is only valid only launching a 16-bit Windows
program. If set, the new process is run in a private Virtual

program. If set, the new process is run in a private Virtual
DOS Machine (VDM). By default, all 16-bit Windows
programs are run in a single, shared VDM. The advantage of
running separately is that a crash only kills the single VDM;
any other programs running in distinct VDMs continue to
function normally. Also, 16-bit Windows applications which
are run in separate VDMs have separate input queues. That
means that if one application hangs momentarily,
applications in separate VDMs continue to receive input.

CREATE_SHARED_WOW_VDM

Windows NT: The flag is valid only when launching a 16-bit
Windows program. If the DefaultSeparateVDM switch in the
Windows section of WIN.INI is TRUE, this flag causes the
CreateProcess function to override the switch and run the
new process in the shared Virtual DOS Machine.

CREATE_SUSPENDED
The primary thread of the new process is created in a
suspended state, and does not run until the ResumeThread
function is called.

CREATE_UNICODE_ENVIRONMENT
If set, the environment block pointed to by lpEnvironment
uses Unicode characters. If clear, the environment block
uses ANSI characters.

DEBUG_PROCESS
If this flag is set, the calling process is treated as a debugger,
and the new process is a process being debugged. The
system notifies the debugger of all debug events that occur in
the process being debugged.
If you create a process with this flag set, only the calling
thread (the thread that called CreateProcess) can call the
WaitForDebugEvent function.

DEBUG_ONLY_THIS_PROCESS
If not set and the calling process is being debugged, the new
process becomes another process being debugged by the
calling process's debugger. If the calling process is not a
process being debugged, no debugging-related actions occur.

DETACHED_PROCESS
For console processes, the new process does not have
access to the console of the parent process. The new
process can call the AllocConsole function at a later time to
create a new console. This flag cannot be used with the
CREATE_NEW_CONSOLE flag.

The dwCreationFlags parameter also controls the new process's priority class, which is used in
determining the scheduling priorities of the process's threads. If none of the following priority class
flags is specified, the priority class defaults to NORMAL_PRIORITY_CLASS unless the priority
class of the creating process is IDLE_PRIORITY_CLASS. In this case the default priority class of
the child process is IDLE_PRIORITY_CLASS. One of the following flags can be specified:

Priority Meaning
HIGH_PRIORITY_CLASS Indicates a process that performs

time-critical tasks that must be
executed immediately for it to run
correctly. The threads of a

correctly. The threads of a
high-priority class process preempt
the threads of normal-priority or
idle-priority class processes. An
example is Windows Task List, which
must respond quickly when called by
the user, regardless of the load on the
operating system. Use extreme care
when using the high-priority class,
because a high-priority class
CPU-bound application can use
nearly all available cycles.

IDLE_PRIORITY_CLASS Indicates a process whose threads
run only when the system is idle and
are preempted by the threads of any
process running in a higher priority
class. An example is a screen saver.
The idle priority class is inherited by
child processes.

NORMAL_PRIORITY_CLASS Indicates a normal process with no
special scheduling needs.

REALTIME_PRIORITY_CLASS Indicates a process that has the
highest possible priority. The threads
of a real-time priority class process
preempt the threads of all other
processes, including operating
system processes performing
important tasks. For example, a
real-time process that executes for
more than a very brief interval can
cause disk caches not to flush or
cause the mouse to be unresponsive.

lpEnvironment
Points to an environment block for the new process. If this parameter is NULL, the new process
uses the environment of the calling process.
An environment block consists of a null-terminated block of null-terminated strings. Each string is
in the form:
name=value

Because the equal sign is used as a separator, it must not be used in the name of an environment
variable.
If an application provides an environment block, rather than passing NULL for this parameter, the
current directory information of the system drives is not automatically propagated to the new
process. For a discussion of this situation and how to handle it, see the following Remarks section.
An environment block can contain Unicode or ANSI characters. If the environment block pointed
to by lpEnvironment contains Unicode characters, the dwCreationFlags field's
CREATE_UNICODE_ENVIRONMENT flag will be set. If the block contains ANSI characters, that
flag will be clear.
Note that an ANSI environment block is terminated by two zero bytes: one for the last string, one
more to terminate the block. A Unicode environment block is terminated by four zero bytes: two
for the last string, two more to terminate the block.

lpCurrentDirectory
Points to a null-terminated string that specifies the current drive and directory for the child process.
The string must be a full path and filename that includes a drive letter. If this parameter is NULL,

The string must be a full path and filename that includes a drive letter. If this parameter is NULL,
the new process is created with the same current drive and directory as the calling process. This
option is provided primarily for shells that need to start an application and specify its initial drive
and working directory.

lpStartupInfo
Points to a STARTUPINFO structure that specifies how the main window for the new process
should appear.

lpProcessInformation
Points to a PROCESS_INFORMATION structure that receives identification information about the
new process.

Return Value

If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call GetLastError.

Remarks

The CreateProcess function is used to run a new program. The WinExec and LoadModule
functions are still available, but they are implemented as calls to CreateProcess.

In addition to creating a process, CreateProcess also creates a thread object. The thread is created
with an initial stack whose size is described in the image header of the specified program's
executable file. The thread begins execution at the image's entry point.

The new process and the new thread handles are created with full access rights. For either handle, if
a security descriptor is not provided, the handle can be used in any function that requires an object
handle of that type. When a security descriptor is provided, an access check is performed on all
subsequent uses of the handle before access is granted. If the access check denies access, the
requesting process is not able to use the handle to gain access to the thread.

The process is assigned a 32-bit process identifier. The ID is valid until the process terminates. It can
be used to identify the process, or specified in the OpenProcess function to open a handle to the
process. The initial thread in the process is also assigned a 32-bit thread identifier. The ID is valid
until the thread terminates and can be used to uniquely identify the thread within the system. These
identifiers are returned in the PROCESS_INFORMATION structure.

When specifying an application name in the lpApplicationName or lpCommandLine strings, it doesn't
matter whether the application name includes the filename extension, with one exception: an
MS-DOS − based or Windows-based application whose filename extension is .COM must include the
.COM extension.

The calling thread can use the WaitForInputIdle function to wait until the new process has finished
its initialization and is waiting for user input with no input pending. This can be useful for
synchronization between parent and child processes, because CreateProcess returns without waiting
for the new process to finish its initialization. For example, the creating process would use
WaitForInputIdle before trying to find a window associated with the new process.

The preferred way to shut down a process is by using the ExitProcess function, because this
function notifies all dynamic-link libraries (DLLs) attached to the process of the approaching
termination. Other means of shutting down a process do not notify the attached DLLs. Note that when
a thread calls ExitProcess, other threads of the process are terminated without an opportunity to
execute any additional code (including the thread termination code of attached DLLs).

ExitProcess, ExitThread, CreateThread, CreateRemoteThread, and a process that is starting (as
the result of a call by CreateProcess) are serialized between each other within a process. Only one
of these events can happen in an address space at a time. This means the following restrictions hold:

• During process startup and DLL initialization routines, new threads can be created, but they do not

• During process startup and DLL initialization routines, new threads can be created, but they do not
begin execution until DLL initialization is done for the process.

• Only one thread in a process can be in a DLL initialization or detach routine at a time.

• The ExitProcess function does not return until no threads are in their DLL initialization or detach
routines.

The created process remains in the system until all threads within the process have terminated and
all handles to the process and any of its threads have been closed through calls to CloseHandle.
The handles for both the process and the main thread must be closed through calls to CloseHandle.
If these handles are not needed, it is best to close them immediately after the process is created.

When the last thread in a process terminates, the following events occur:

• All objects opened by the process are implicitly closed.

• The process's termination status (which is returned by GetExitCodeProcess) changes from its
initial value of STILL_ACTIVE to the termination status of the last thread to terminate.

• The thread object of the main thread is set to the signaled state, satisfying any threads that were
waiting on the object.

• The process object is set to the signaled state, satisfying any threads that were waiting on the
object.

If the current directory on drive C is \MSVC\MFC, there is an environment variable called =C: whose
value is C:\MSVC\MFC. As noted in the previous description of lpEnvironment, such current directory
information for a system's drives does not automatically propagate to a new process when the
CreateProcess function's lpEnvironment parameter is non-NULL. An application must manually pass
the current directory information to the new process. To do so, the application must explicitly create
the =X environment variable strings, get them into alphabetical order (because Windows NT and
Windows 95 use a sorted environment), and then put them into the environment block specified by
lpEnvironment. Typically, they will go at the front of the environment block, due to the previously
mentioned environment block sorting.

One way to obtain the current directory variable for a drive X is to call GetFullPathName("X:",. .).
That avoids an application having to scan the environment block. If the full path returned is X:\, there
is no need to pass that value on as environment data, since the root directory is the default current
directory for drive X of a new process.

The handle returned by the CreateProcess function has PROCESS_ALL_ACCESS access to the
process object.

When a process is created with CREATE_NEW_PROCESS_GROUP specified, an implicit call to
SetConsoleCtrlHandler(NULL,TRUE) is made on behalf of the new process; this means that the
new process has CTRL-C disabled. This lets good shells handle CTRL-C themselves, and selectively
pass that signal on to sub-processes. CTRL-BREAK is not disabled, and may be used to interrupt the
process/process group.

The current directory specified by the lpcurrentDirectory parameter is the current directory for the
child process. The current directory specified in item 2 under the lpCommandLine parameter is the
current directory for the parent process.

See Also

AllocConsole, CloseHandle, CreateRemoteThread, CreateThread, ExitProcess, ExitThread,
GenerateConsoleCtrlEvent, GetCommandLine, GetEnvironmentStrings, GetExitCodeProcess,
GetFullPathName, GetStartupInfo, GetSystemDirectory, GetWindowsDirectory, LoadModule,
OpenProcess, PROCESS_INFORMATION, ResumeThread, SECURITY_ATTRIBUTES,
SetConsoleCtrlHandler, SetErrorMode, STARTUPINFO, TerminateProcess, WaitForInputIdle,
WaitForDebugEvent, WinExec

